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Setting: Posthoc Interpretability

Training Data  
as 

Queries, docs, 
Relevance labels

Do not poison
the trap ?

No poisonous
mice ?

Do not poison the
mice ?

No poison no
paradise ?

Approximate the learned model with a 
simpler understandable model

f(x)



Feature Attribution Based Explanations 

Free-Text Explanations
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๏ Accurate — Should find the right reasons behind a 
decision  

๏ Fidelity —  Closely mimic the behaviour of the learnt model 

๏ Explanation should be understandable  

๏ Explanation space — words, phrases,… 

๏ Explanation model should also be simple 

๏ Linear model, BM25, ..
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What is a good explanation ?



๏ Generic Categorisation: 

๏ Local Explanations: Explains based on only an instance (e.g. why a document 
is relevant to a particular query?). 

๏ Global Explanations:  Explains in terms of  a retrieval model. 

๏  IR Specific Categorisation: 

๏ Point-Wise Explanation: Explains  a query-document pair. 

๏ Pair-Wise Explanation:  Explains a pair of documents with respect to a query. 

๏  ListWise Explanation: Explains the ranked list corresponding to a query.
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Categorisation of Explainable Approaches



๏ Global approximation using a simpler model and simple 
feature space is hard to achieve 

๏ Local approximations are possible
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Simple vs Accuracy

f(x)



๏ Given a query instance, sample a local training dataset by 
querying the black box model 

๏ Fit a simpler (proxy) model to the local dataset 

๏ Example: LIME
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Local Interpretability

Query

f(x)



๏ Step 1: Collect a local dataset in the epsilon neighborhood around each 
query instance 

๏ Note that the labels come from the original classifier f(x) 

๏ Step 2: Train a simple classifier to fit the local dataset
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LIME in a nutshell

Query

f(x)



๏  A point-wise local explanation approach for text rankers

9

LIRME: Adapting LIME to Rankings 

[Verma & Ganguly, SIGIR 19]

๏ Step 1: Collect a local dataset in the epsilon neighborhood around each 
query instance 

How do we create (small) perturbations to the original text document to 
create a local sample? 



๏  A point-wise local explanation approach for text rankers
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LIRME: Adapting LIME to Rankings 

[Verma & Ganguly, SIGIR 19]

๏ Step 1: Collect a local dataset in the epsilon neighborhood around each 
query instance 

How do we create (small) perturbations to the original text document to 
create a local sample? 

๏ Step 2: Train a simple classifier to fit the local dataset

What is the simple classifier ? How do we interpret the results of the fit ?
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Document Perturbations

SearchHealth hazards

Doctors say fatty food is hazardous for a healthy lifestyle

Doctors say fatty food is hazardous for a healthy lifestyle

Doctors say fatty food is hazardous for a healthy lifestyle



Masked Sampling: Segment a document D into D/k chunks. Each 
subsample can comprise a set of chunks
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Document Perturbations

Doctors say fatty food is hazardous for a healthy lifestyle 

Sample terms to be added or removed to a document

Uniform Sampling Sample 
terms with a uniform likelihood 
(with replacement). 

Biased Sampling sampling 
probability of a term 
proportional to Tf-Idf



L(D, Q, σ, θ) =
M

∑
i=1

ρ(D, D′ i)(S(D, Q) −
p

∑
j=1

θjw(tj, D′ i))2
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LIRME :Objective Function
 is a  dimensional 

vector showing the 
importance of a term  

in .

θj p

t
S(D, Q)

Retrieval score 
of a document 

with respect to a 
query.

 is the 
sampled 
version of 

D.

D′ i

 : 
Measures the 

distance between 
D and 

ρ(D, D′ i)

D′ i
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Example Explanation of LIRME



๏  Explanation Consistency: Choice of samples around the pivot 
document D should not result in considerable differences in the 
predicted explanation vector.  

๏ Computes correlation between predicted and ground truth 
ranking of terms 

๏ Explanation Correctness: Computes similarity between 
explanation vector terms  and relevant terms θ(Q, D) R(Q)
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Evaluation Approaches Used in LIRME



๏ Pointwise and global explanation approach 

๏ Explanation units — term frequency, document length, 
document frequency, semantic similarity 

๏ Provides a framework to explain both  

๏ within a ranking model and  

๏ between different retrieval models
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LIRME: Explanation from an IR Practitioner’s POV

[Verma & Ganguly, SIGIR 20]



๏ For each retrieval model and for each query train a regression 
classifier based on the fundamental features 

๏ Choose randomly k number of queries for a particular model 

๏ Contribution of each feature is the average weights learned across 
 queriesK
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Global Feature Importance



๏ Why does a model  retrieve a document  at rank  and  
at  (  without loss of generality) for a query  (Pair-
Wise Explanation)?  

๏ Compute the contribution of a feature in the retrieval score 
computation. 

๏ Compute relative Contribution Difference between a pair of 
documents. 

๏ If  Fidelity score and importance of the feature have same signs, 
that acts as a possible explanation 

M D1 r1 D2
r2 r2 > r1 Q
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Explanation Within a Ranking Model



๏ Why does a model  retrieve a document  at position , whereas 
model  retrieves  at  for a query ? 

๏  

๏    measures the relative importance 
difference between the feature importance across different retrieval 
models. 

๏  measures the relative drop in score with respect to the 
top most document. 

๏  If  > 0 that acts as a plausible explanation.

M1 D r1
M2 D r2 Q

ξ(M1, M2) = Δs(D, M1, M2) ⋅ Δ(M1, M2),

Δ(M1, M2) = ⃗θ(M1, Q) − ⃗θ(M2, Q)

Δs(D, M1, M2)

ξx
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Explanation Across Ranking Models



๏ Explanation: A set of terms that is a super set of Q 

๏ Q’ = Q U {w1 , w2, …} where wi are explanation terms 

๏ Proxy Model: A simple and easy to understand model 
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Listwise explanations

f(Q)
D1 > D2 > . . . > DkC = {D1, . . . , DN}

We have to explain an already trained model f(Q)

E(Q’)
D1 > D2 > . . . > DkC = {D1, . . . , DN}

Rank Correlation
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Local Interpretability for Rankings

d1 
d3 
d5 
d2 
d4 

Query Q Query Q 
+

d1 
d3 
d5 
d2 
d4 

Rank Correlation

Explanation Terms

f(Q) E(Q’)

f(Q)
D1 > D2 > . . . > DkC = {D1, . . . , DN}

Proxy ModelTrained Model
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Selecting Candidate Terms

SearchHealth hazards

Doctors say fatty food is hazardous for a healthy lifestyle 0.93

Doctors say fatty food is hazardous for a healthy lifestyle 0.03

Doctors say fatty food is hazardous for a healthy lifestyle 0.92

{doctor, hazardous, healthy}
Candidate Terms
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Preserving Rank Correlation

C
an

di
da

te
 T

er
m

s
d1 > d2 d1 > d3 d2 > d3 d1 > d4 d2 > d5

le

handle

doctor

invert

medicin

d1

d2

d3

d4

d5

Preference Pairs

0.38

How much does “doctor” prefer d1 over d3 using 

Health hazards doctor 
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Preference Coverage Problem

Model Agnostic Interpretability of Rankers via Intent Modelling FAT* ’20, January 27–30, 2020, Barcelona, Spain

d1 > d2 d1 > d3 d2 > d3 d1 > d4 d2 > d5

le -0.2 -0.8 -0.12 -0.34 0.98

handle -0.1 -0.34 -0.24 -0.0001 -0.7

doctor -0.11 0.34 0.1 -0.223 -0.34

invert -0.45 0.04 -0.67 -0.23 -0.003

medicin -0.34 -0.31 0.5 0.8 0.01

Sum -0.45 0.03 0.6 0.577 -0.33

Expansion Terms = { doctor, medicin}

health 
hazards

d1

d2

d3

d4

d5

Explain  
top-3

Preference Pairs or Features

Figure 2: preference Matrix for the ranking for the query
“health hazards”

.

5.2 Modeling Preference Pairs
Until now we were concerned with the terms that are relevant to
the query. However, not all terms are responsible for preference
pairs induced by the original ranking. In what follows, we describe
a procedure on how to select terms from the candidate set that
preserve the preference pair ordering in BB (Q ).

In principle, for a ranking of sizek we havek .(k�1)/2 concordant
pairs. However, only considering the preference pairs from the
top-k documents could result in higher likelihood of false positive
terms being included in the selection set. False positive terms tend
to be general terms that co-occur with relevant terms resulting
in an increased local �delity (local here refers to the top ranked
documents). We counteract the e�ect of false positives by sampling
additional preference pairs from outside the top-k and requiring that
the algorithm covers a larger number of preference pairs. Carefully
sampling pairs can help focus on alternate yet important query
aspects and prevent over�tting. Conversely, improper sampling or
sampling too many pairs from the tail could lead to good global
rank �delity but poor local rank �delity.

Sampling Preference Pairs/Features.We use multiple strategies
to sample preference pairs.

(1) ������ : randomly select preference pairs from the target
ranking � .

(2) ���� ������ : sample preference pairs from� that areweighted
by rank. Each pair (d� (i ) � d� (j )) is weighted by 1/rank(di )+
1/rank(dj ).

(3) ����� + ���� ������ : construct preference pairs based on
a combination of rank and random sampling. In this method,
for a preference pair (d� (i ) � d� (j )), di is rank bias sampled
but dj is randomly sampled.

(4) ����� + ������ : consider all pairs from the top-k results
to explain and a �xed number of randomly sampled pairs.

We contrast these against ����� that are all preference pairs in
top-k results in the experiments.

Constructing the Preference Matrix The next step in our ap-
proach is to construct an n ⇥m preference matrix for a given can-
didate E , where n is the number of candidate terms andm is the

number of preference pairs. For each preference pair / feature, we
compute a score that encodes the degree of concordance the can-
didate term maintains for the pair. We employ E to �rst estimate
the importance of a term for each document. The score for the
term w given a pair d� (i ) � d� (j ) is computed as SE (w,d� (i )) -
SE (w,d� (j )) .

SE (, ) is the relevance score estimated by E as SBB (, ) is to
BB . The score for each cell is computed by then multiplying it
with a weight corresponding to each preference pair. We make the
assumption that more distant concordant pairs (rank 1 vs rank 10)
as opposed to close ranked document pairs (rank 11 vs rank 12)
contains stronger evidence of relevant intent terms. We weight a
given preference pair d� (i ) � d� (j ) bywi j = 1 + ln(j � i).

In the next section we show how this choice allows us to directly
optimize for �delity if we select an E akin to a language model
where qi 2 q are terms in a query.

SE (q,d) = P (d |q) =
Y
qi 2q

P (qi |d) =
X
qi 2q

lo�P (qi |d) (1)

5.3 Optimizing Preference Pair Coverage
Once we construct a good set of candidates we then build the
preference matrix corresponding to a set of pre-selected E . In this
section we describe how to �nd the set of terms I given a single
preference matrix.

We start with a set of candidate expansion terms X (|X|= n),
where each expansion term t 2 X is described by a feature vector;
thus, t has a vector (p1, . . . ,pd ) 2 Rd , and feature vectors in X ✓
Rd . Each feature corresponds to a preference paird� (i ) � d� (j ) and
its value determines to what degree is the preference pair satis�ed
if t is chosen (described earlier as SE (w,d� (i )) - SE (w,d� (j )) ). We
build the preference matrix P from the term vectors and intend to
�nd a minimal set of terms I ✓ X as expansion terms.

PreferenceCoverage.Given a selection set represented as a Boolean
vector s , the preference coverage PC�� over the aggregate vector
Ä = sTX is given by PC��(s) = P

i J�i > 0K.
The best selection of expansion terms naturally is the set that

maximizes the preference coverage or explanation �delity. We pose
theM������ P��������� C������� problem as choice of a set of
terms where maximum preferences are covered. Writing it as an
Integer Linear Program we have:

max
X

0j<m
J�j > 0K (2)

s .t . (3)
si 2 {0, 1}, 0  i < n (4)

�j =
X

0in
si .Pi , j .wi , j (5)

Note that Pi , j = SE (w,d� (i )) - SE (w,d� (j ))
The M������ P��������� C������� problem is NP hard. We

do not include the proof in the paper for space reasons but we
note that the proof sketch follows from the fact that the M������
P��������� C������� is a generalization of the well known S��
C���� problem. Not only is the M������ P��������� C�������
problem NP hard, it is also easy to see that it is not sub-modular.

NP-Hard: Generalization of budgeted max. weighted coverage

Solution: Greedy heuristic and ILP works well in practice  
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Evaluating Explanations
Query Query 

+

Expansion Terms
Explanation

Accuracy

Ground Truth ?

d1 
d3 
d5 
d2 
d4 

d1 
d3 
d5 
d2 
d4 

Fidelity
0.78

f(Q) E(Q’)
Proxy ModelTrained Model
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Now improved
Query Query 

+

Expansion Terms
Explanation

Accuracy

Ground Truth ?

d1 
d3 
d5 
d2 
d4 

d1 
d3 
d5 
d2 
d4 

Fidelity
0.78

f(Q) E(Q’)
Proxy ModelTrained Model

> 0.90
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Anecdotal Results

Singh & Anand, FAT 20
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Recent Results

Lyu & Anand, ECIR’23
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Explainers Explanation

T���M������� charlotte, north, sales, 2008
P������� A�������� basketball, north, states, learn
S������� S��������� felidae, carnivorous, boko

extinction, deserts, iucn
M�������� felidae, carnivorous, boko
(Multiple Explainers) extinction, deserts, gvwr, north

Table 1: Explaining the query bobcat with multiple aspects
– (i) “charlotte-bobcat basketball club”; (ii) “learn to hunt
bobcat”; (iii) “animal bobcat” and (iv) “bobcat mechanical re-
tailer”.M�������� carefully chooses from multiple aspects
to explain a ranking. See Table 3 for more examples.

In this paper, we propose a more principled approachM��������
to post-hoc interpretability of ranking models by considering mul-
tiple simple rankers, or explainers, that rely on di�erent notions
of relevance and are interpretable by themselves. The output of
M�������� is a set of explanation terms where the expanded query
(original query along with the output intent terms) is the intent or
explanation of the query. An example output is showed in table 1.
In coming up with the explanation or the intent, we hypothesize
that an expanded query along with a more straightforward and
interpretable model is an accurate interpretation of the underlying
ranking model if it produces a similar ranking to the ranking of the
ranking model. Speci�cally, we de�ne the G���������� P������
���� C������� using multiple explainers that intend to maximize
our explanation’s approximation. We note that standard ILP solvers
for solving the objective induced by G���������� P���������
C������� are limited due to the lack of �exibility in modeling non-
convex problemswith sparsity constraints. The preference coverage
calculation involves the B86= function, which is non-convex and
thus not solvable by most solvers. Towards this,M�������� uses
tanh activation as the alternative approximation to B86= and using
modern quasi-newton solvers [19] to optimize it. Unlike previous
approaches that rely on greedy heuristic approaches to solve the
coverage problem over preference pairs, M�������� is based on
convex optimization using the augmented lagrangian algorithm to
solve the G���������� P��������� C������� problem.

Experimental Evaluation. We conduct extensive experiments
using queries and documents from the TREC test collections –
Trec-DL and ClueWeb with a variety of neural ranking models to
evaluateM��������. We report �delity improvements of 37%� 54%
over existing competitors, proving that multiple explainers result
in better explanations and fewer errors. We also present anecdotal
evidence and case studies that showcase the practical utility of
M�������� in understanding neural rankers.

2 RELATEDWORK
Interpretability of these complex models has been studied in various
domains to better understand decisions made by the network –
computer vision [10, 29, 38], natural language processing [2, 22, 40],
recommender systems [8] etc. We are interested in interpretability
of text-ranking models and try to contextualize our contribution

in terms of (i) general methodology of post-hoc interpretability
(in Section 2.1), and (ii) speci�c approaches to interpretability for
ranking models (in Section 2.2).

2.1 Post-hoc interpretability
Models can either be interpretable by design or can be interpreted
in a post-hoc manner. Models that are inherently “interpretable” or
are interpretable by design tend to be simple models whose internal
decisions can be easily interpreted. Examples of such models are
decision trees, rules-based methods [21], additive models [7], or
more recently attention-based or sparsity-based methods [38, 40].
On the other hand post-hoc methods for interpretability approaches
operate on already trained models. Post-hoc methods can be catego-
rized into two broad classes: model introspective and model agnostic.
Model introspection refers approaches that have access to all the
model parameters like gradient-based methods [4, 9, 28, 30, 35]. We
however operate in the model agnostic regime where we do not
assume any access to the ranking model’s parameters. The seminal
work that has inspired many approaches called LIME [27] is based
on using a simple interpretable surrogate model to locally approxi-
mate an already trained black-box model. However, the problems
with LIME are that of over�tting due to using one explainer or
focusing overtly on the query locality. In this work, we improve the
�delity of the explanations by allowing for multiple proxy models.
For other notions of interpretability and a more comprehensive
description of the approaches we point the readers to [15].

2.2 Interpreting Ranking Models
In information retrieval there has been limited work on interpreting
rankings. The earliest for explaining rankings was in the context
of learning-to-rank where Singh and Anand [31] tried to approxi-
mate an already trained learning to rank model by a subset of (the
original) interpretable features using secondary training data from
the output of the original model. Singh et al. [34] also operate on
tabular data for rankings but focus on �nding a minimal set of
relevant features that faithfully explain the ranking. In this paper,
we do not deal with learning-to-rank approaches, but rather focus
on ranking text data.

Gradient-based approaches like [9, 13] have been applied to neu-
ral rankers for interpreting the relevance score of a single query
document pair. Firstly, these works do not consider aggregations
of decisions for a given query, i.e., preference pairs of documents.
Unlike gradient-based approaches our approaches are agnostic to
the parameters of the underlying model and hence more general.
Note that we use gradient-based approaches as one of our competi-
tors in our experiments. Câmara and Hau� [6], Völske et al. [37]
explain adhoc ranking models in terms of information retrieval
axioms. Similar to us, [37] also focuses on optimizing coverage of
preference pairs but unlike us use learning approaches.

b T����:More comparison and discussion between this
work and [6]

However, their approaches also report lower �delity values showing
the di�culty of the task at hand.

Related to our work are [32, 36] that are both post-hoc andmodel-
agnostic approaches for ad-hoc ranking. Verma and Ganguly [36]
modi�es LIME to output intent terms by measuring how close the

2

Multiple Explainers: Rankings with different aspects 

Query:  
Bobcat 



๏ Free Text explanations methods aim to generate explanations 
using natural language. 

๏ Typical free-text explanations are not more than a few 
sentences long, and sometimes even limited to a few words. 

๏ Approaches for text ranking models focus either on 
interpreting the query intent as understood by a ranking 
model or on producing a short text summary to explain why 
an individual document or a list of documents is relevant. 
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Free-Text Explanations: Overview



๏ Input: Query, Set of Relevant Documents, Set of Irrelevant 
documents. 

๏ Output: Intent Description which precisely interprets the 
search intent that can help distinguish the relevant 
documents from the irrelevant documents. 

๏ Exploits an Encoder Decoder Architecture.

30

Query Intent Explanation
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Query Intent Descriptor Architecture

Architecture of Intent Descriptor
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Example Intent Description
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Thank You
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Information theoretic view

“Feature-based explanations are 
valid if they contain most of the 

predictive power”
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Explanations from RDT

Do not poison
the trap ?

No poisonous
mice ?

Do not poison the
mice ?

No poison no
paradise ?

Prediction 

Do not poison
the trap ?

No poisonous
mice ?

Do not poison the
mice ?

No poison no
paradise ?Prediction 



Ranking 

Do not poison
the trap ?

No poisonous
mice ?

Do not poison the
mice ?

No poison no
paradise ?Ranking
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Do not poison
the trap ?

No poisonous
mice ?

Do not poison the
mice ?

No poison no
paradise ?
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Local Ranking Explanations

Extracting per Query Valid Explanations for Blackbox Learning-to-Rank Models, Singh et al.,  ICTIR 21.
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Local Ranking

Ranking 

Do not poison
the trap ?

No poisonous
mice ?

Do not poison the
mice ?

No poison no
paradise ?Ranking
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Do not poison
the trap ?

No poisonous
mice ?

Do not poison the
mice ?

No poison no
paradise ?

Extracting per Query Valid Explanations for Blackbox Learning-to-Rank Models, Singh et al.,  ICTIR 21.

NP-hard and no sub-modularity
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Greedy Algorithm

Ranking 

Do not poison
the trap ?

No poisonous
mice ?

Do not poison the
mice ?

No poison no
paradise ?Ranking
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Do not poison
the trap ?

No poisonous
mice ?

Do not poison the
mice ?

No poison no
paradise ?

Extracting per Query Valid Explanations for Blackbox Learning-to-Rank Models, Singh et al.,  ICTIR 21.
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Result

Valid Explanations for Learning to Rank Models 15

(a) Pairwise Ranker (b) Listwise Ranker

Fig. 2: E↵ect of k. The graphs show the validity of increasing explanation sizes
(3, 5, 7, 10) for MSLR.

find that for the PairWise model for MQ2008 the validity of the ideal feature
set is 0.860 on average. Our best approach produces an explanation F 0 (k=5)
that achieves an average validity of 0.616 which shows that even if we make
sub-optimal choices in the beginning we are able to exploit pairwise preferences
e↵ectively to eventually construct an explanation that is closer to the ideal than
all the other approaches. For PointWise and ListWise models, the ideal validity
is 0.80 and 0.76 respectively. Here we see a larger scope for improvement. For
MSLR, the ideal validity for all models was approximately 0.3 which once again
shows that we are not too far from the ideal explanation especially for pairwise
models (0.110 for greedy-cover-✏ ).

5.4 E↵ect of k

In section 3, we outlined that our optimization problem was not exactly sub-
modular. Inspite of this, our greedy approaches are still able to find increasingly
valid explanations as the size of the explanation is increased. Figure 2 illus-
trates this finding for 2 models for MSLR. We found similar trends for the other
dataset and models. An interesting finding here is that increasing k benefits
greedy-cover-✏ more than greedy-cover . greedy-cover is more likely to
be a↵ected by smaller ranked lists (fewer concordant pairs sampled) since pairs
will be covered at a faster rate. greedy-cover-✏ on the other hand is able to
iteratively cover only pairs where it is most confident. By having more pairs in
each iteration, the utility of the feature added to the explanation can be better
estimated.

6 Conclusion and Future Work

In this paper we introduce the novel problem of finding explanations for LTR
models in a local posthoc manner. We defined notions of validity and com-
pleteness specifically for rankings. We proposed a flexible framework for valid

Extracting per Query Valid Explanations for Blackbox Learning-to-Rank Models, Singh et al.,  ICTIR 21.
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Stable Explanations
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0.6 0.32 0.23 0.71 0.25 0.8
Do not poison

the trap ?

No poisonous
mice ?

Do not poison the
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No poison no
paradise ?Prediction

0.15 0.32 0.46 0.71 0.5 0.3
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No poisonous
mice ?

Do not poison the
mice ?

No poison no
paradise ?Prediction
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paradise ?Prediction0.1
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Stable Explanations
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0.6 0.32 0.23 0.71 0.25 0.8
Do not poison

the trap ?

No poisonous
mice ?

Do not poison the
mice ?

No poison no
paradise ?Prediction

0.15 0.32 0.46 0.71 0.5 0.3
Do not poison

the trap ?

No poisonous
mice ?

Do not poison the
mice ?

No poison no
paradise ?Prediction

Problem: Choose subset of explanation features that result in majority 
of reconstructions being aligned to the original prediction


