Explainable-by-design approaches

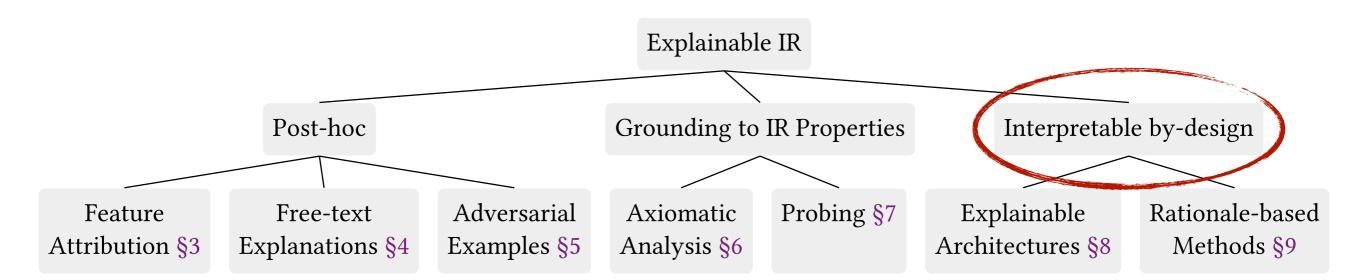
Explainable Information Retrieval

Interpretability Landscape

Explainable Information Retrieval: A Survey

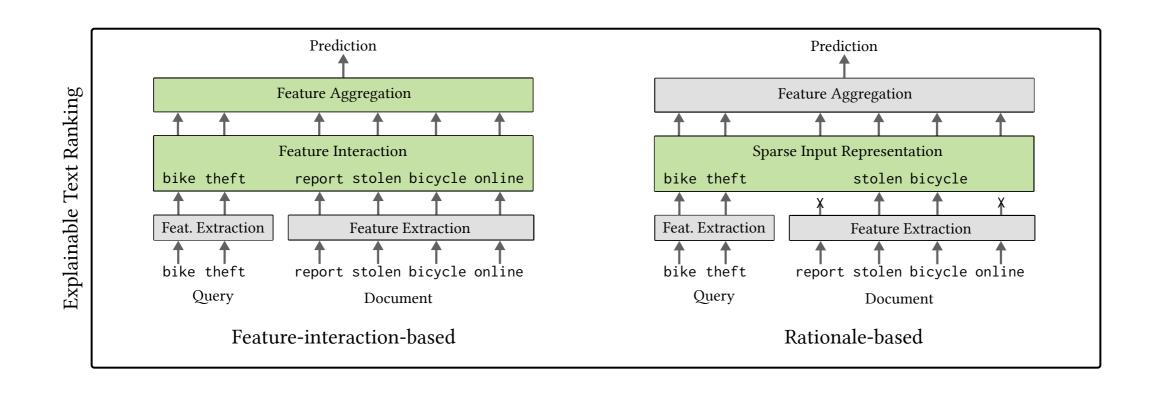
https://arxiv.org/abs/2211.02405

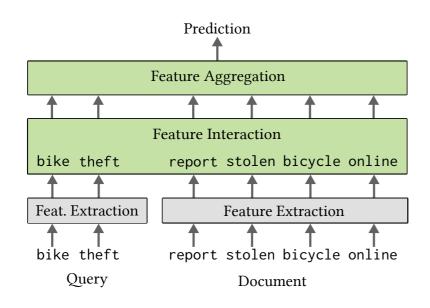
AVISHEK ANAND and LIJUN LYU, Delft University of Technology, The Netherlands MAXIMILIAN IDAHL, YUMENG WANG, JONAS WALLAT, and ZIJIAN ZHANG, L3S Research Center, Leibniz University Hannover, Germany



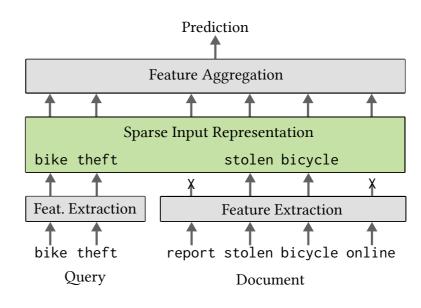
IBD Approaches







Feature-interaction-based



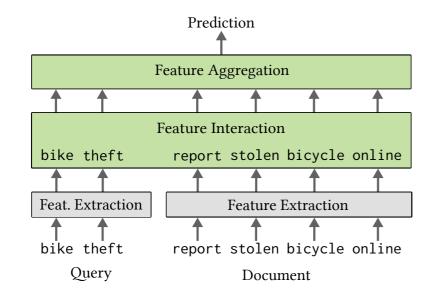
Rationale-based

What component is interpretable?

Feature extraction

Intermediate input representations

Feature Interaction and aggregation



Feature Aggregation

Sparse Input Representation
bike theft

Stolen bicycle

Feat. Extraction

Feature Extraction

bike theft

Cuery

Document

BERT-based

Feature-interaction-based

Rationale-based

What component is interpretable?

Feature extraction

BERT-based

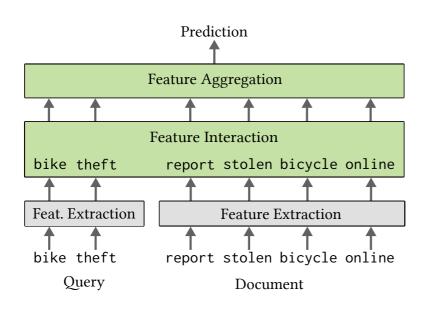
Intermediate input representations

Feature Interaction and aggregation

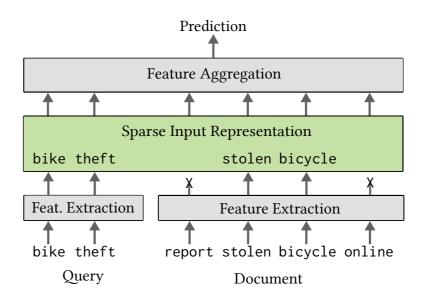
Non-interpretable

interpretable

interpretable



Feature-interaction-based



Rationale-based

What component is interpretable?

Feature extraction

Intermediate input representations

Feature Interaction and aggregation

Non-interpretable

interpretable

interpretable

Standard Learning Setup

Standard ML



The movie experience was awful

Parameterised Model (BERT)

Explain then Predict

The movie experience was awful

Explain

Parameterised Model (BERT)

The movie experience was awful

Ensure prediction is solely on the explanations

Predict

Parameterised Model (BERT)

Rationalizing Neural Predictions

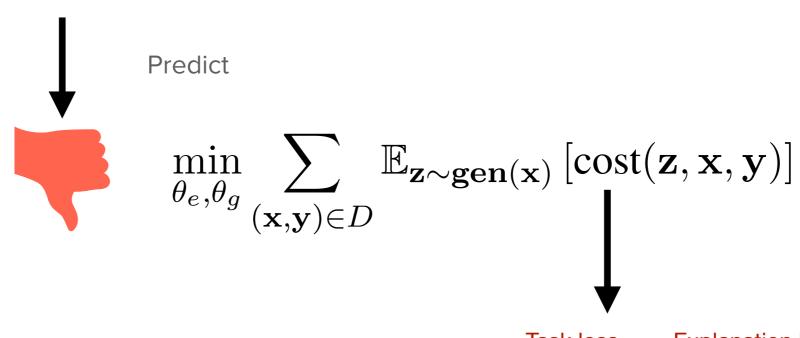
Tao Lei, Regina Barzilay and Tommi Jaakkola

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
{taolei, regina, tommi}@csail.mit.edu

Optimizing explain then predict

The movie experience was awful

The movie experience was awful



Task loss Explanation loss

$$\begin{aligned} \cos \mathbf{t}(\mathbf{z}, \mathbf{x}, \mathbf{y}) &= \mathcal{L}(\mathbf{z}, \mathbf{x}, \mathbf{y}) + \Omega(\mathbf{z}). \\ &= \lambda_1 \|\mathbf{z}\| + \lambda_2 \sum_t |\mathbf{z}_t - \mathbf{z}_{t-1}| \\ &\text{Sparsity} \end{aligned}$$

Lei et. al [ACL 2018]

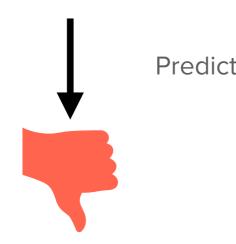
Optimizing explain then predict

The movie experience was awful

Explain Parameterised Model (BERT)

$$\frac{\partial \mathbb{E}_{\mathbf{z} \sim \mathbf{gen}(\mathbf{x})} \left[\mathbf{cost}(\mathbf{z}, \mathbf{x}, \mathbf{y}) \right]}{\partial \theta_g}$$

The movie experience was awful



Parameterised Model (BERT)

$$\min_{\theta_e, \theta_g} \sum_{(\mathbf{x}, \mathbf{y}) \in D} \mathbb{E}_{\mathbf{z} \sim \mathbf{gen}(\mathbf{x})} \left[\mathbf{cost}(\mathbf{z}, \mathbf{x}, \mathbf{y}) \right]$$

$$\frac{\partial \mathbb{E}_{\mathbf{z} \sim \mathbf{gen}(\mathbf{x})} \left[\mathbf{cost}(\mathbf{z}, \mathbf{x}, \mathbf{y}) \right]}{\partial \theta_g} \quad = \quad \mathbb{E}_{z \sim \mathbf{gen}(\mathbf{x})} \left[\mathbf{cost}(\mathbf{z}, \mathbf{x}, \mathbf{y}) \frac{\partial \log p(\mathbf{z} | \mathbf{x})}{\partial \theta_g} \right]$$

Doubly stochastic gradient / policy gradients/ REINFORCE

Explanation Performance

How human-like are the explanations?

Explanation accuracy — Macro Token-wise F1

Fact Checking

Query: san francisco bay area contains zero towns

Human annotation: the san francisco bay area, referred to locally as the bay area is a populous region surrounding the san francisco and san pablo estuaries in northern california. The region encompasses the major cities and metropolitan areas of san jose, san francisco, and Oakland, along with smaller urban and rural areas. The bay area's nine counties areSanta Clara, Solana and Sonoma. The combined statistical area of the region is the second largest in california after the Los Angeles area.

Extractive explanation: the san francisco bay area, referred to locally as the bay area is a populous region surrounding the san francisco and san pablo estuaries in northern california. The region encompasses the major cities and metropolitan areas of san jose, san francisco, and Oakland, along with smaller urban and rural areas. The bay area's nine counties areSanta Clara, Solana and Sonoma. The combined statistical area of the region is the second largest in california after the Los Angeles area.

Soft-matching metric: Token-wise precision, recall, and F1

Explanation Performance

How human-like are the explanations?

Explanation accuracy — Macro Token-wise F1

Fact Checking

Query: san francisco bay area contains zero towns

Human annotation: the san francisco bay area, referred to locally as the bay area is a populous region surrounding the san francisco and san pablo estuaries in northern california. The region encompasses the major cities and metropolitan areas of san jose, san francisco, and Oakland, along with smaller urban and rural areas. The bay area's nine counties areSanta Clara, Solana and Sonoma. The combined statistical area of the region is the second largest in california after the Los Angeles area.

Extractive explanation: the san francisco bay area, referred to locally as the bay area is a populous region surrounding the san francisco and san pablo estuaries in northern california. The region encompasses the major cities and metropolitan areas of san jose, san francisco, and Oakland, along with smaller urban and rural areas. The bay area's nine counties areSanta Clara, Solana and Sonoma. The combined statistical area of the region is the second largest in california after the Los Angeles area.

How much does Task Performance drop?

Task accuracy — Macro F1

Benchmarks

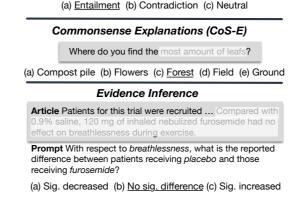
ERASER : A Benchmark to Evaluate Rationalized NLP Models

Jay DeYoung^{* Ψ}, Sarthak Jain^{* Ψ}, Nazneen Fatema Rajani^{* Φ}, Eric Lehman^{Ψ}, Caiming Xiong^{Φ}, Richard Socher^{Φ}, and Byron C. Wallace^{Ψ}

Name	Size (train/dev/test)	Tokens	Comp?
Evidence Inference	7958 / 972 / 959	4761	♦
BoolQ	6363 / 1491 / 2817	3582 Movie	e Reviews
Movie Reviews	1600 / 200 / 200 In this		ke over the vorld. The acting
FEVER	97957 / 6122 / 611 Ihan m	akes up 327	√
MultiRC	24029 / 3214 / 4848		ive (b) Negative
CoS-E	8733 / 1092 / 1092	28	SNLI 🗸
e-SNLI	911938 / 16449 / 164 29 ma	an in an orange vest l an is touch 1 f a truck	eans over a pickup truck

How human-like are the explanations?

Soft-matching metric: Token-wise precision, recall, and F1

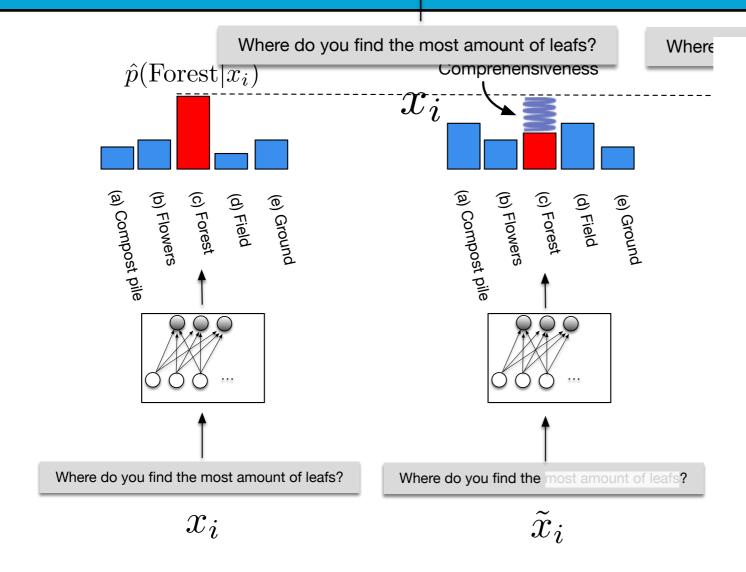


problem: a model may provide rationales that are plausible (agreeable to humans) but that it did not rely on the for its output.

Need: rationales extracted for an instance in this case ought to have meaningfully in-fluenced its prediction for the same

How faithful are the explanations to the model?

Faithfulness



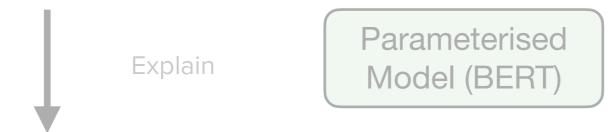
comprehensiveness =
$$m(x_i)_j - m(x_i \backslash r_i)_j$$

Original pred. pred. with rationale removed

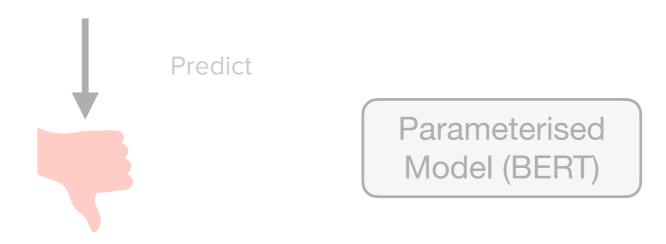
sufficiency =
$$m(x_i)_j - m(r_i)_j$$
Original pred. pred. with just rationale

Problem

The movie experience was awful



The movie experience was awful



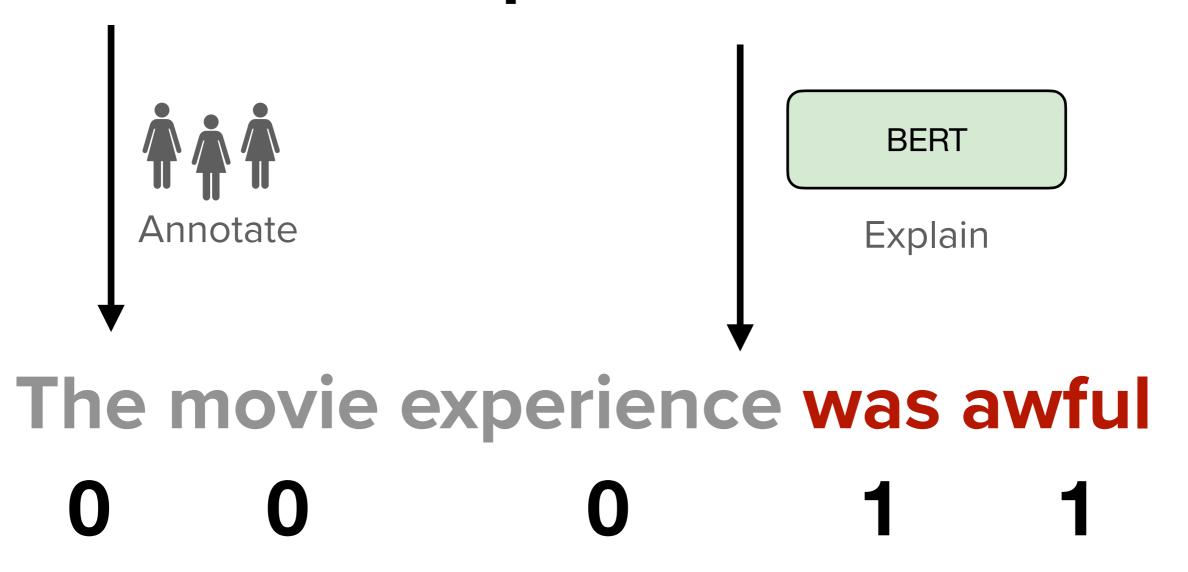
Optimizing just from the task labels is hard

Explanation generator is task unaware

Policy-gradient optimization known to be high variance

Explanation Data

The movie experience was awful



Explanation Data

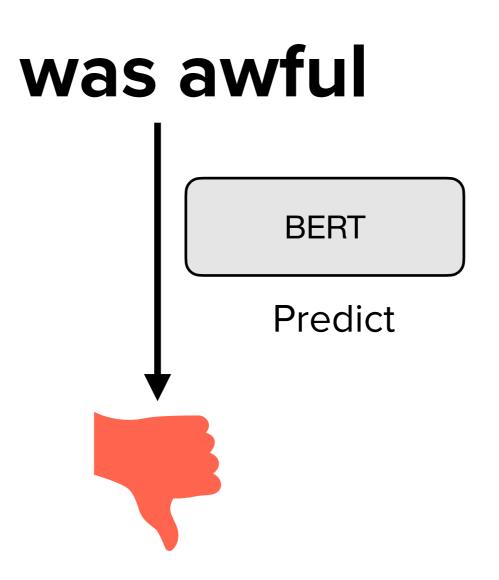
The movie experience was awful



The movie experience was awful

$$egin{aligned} \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} \ \mathcal{L}_{ ext{exp}} &= rac{1}{|S|} \sum_{i=1}^{|S|} |S_{t^i}| \cdot ext{BCE}\left(p^i, t^i
ight) \end{aligned}$$

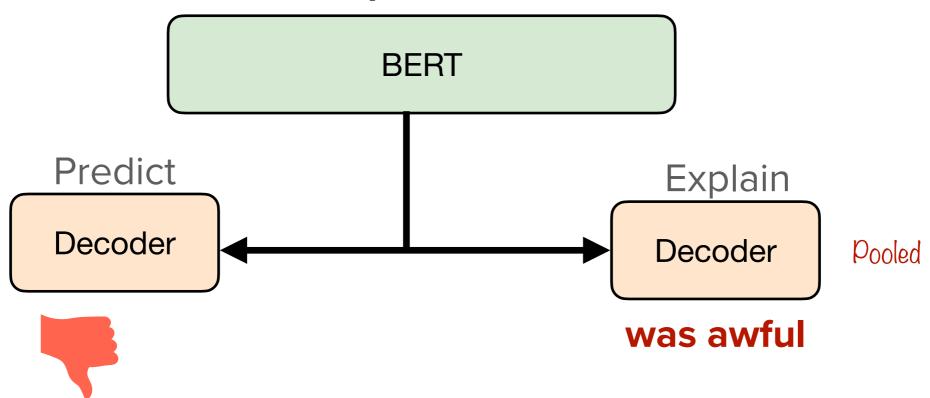
Predict Model



Explain and Predict

Shared parameters during input encoding ensures that explanations are task aware

The movie experience was awful



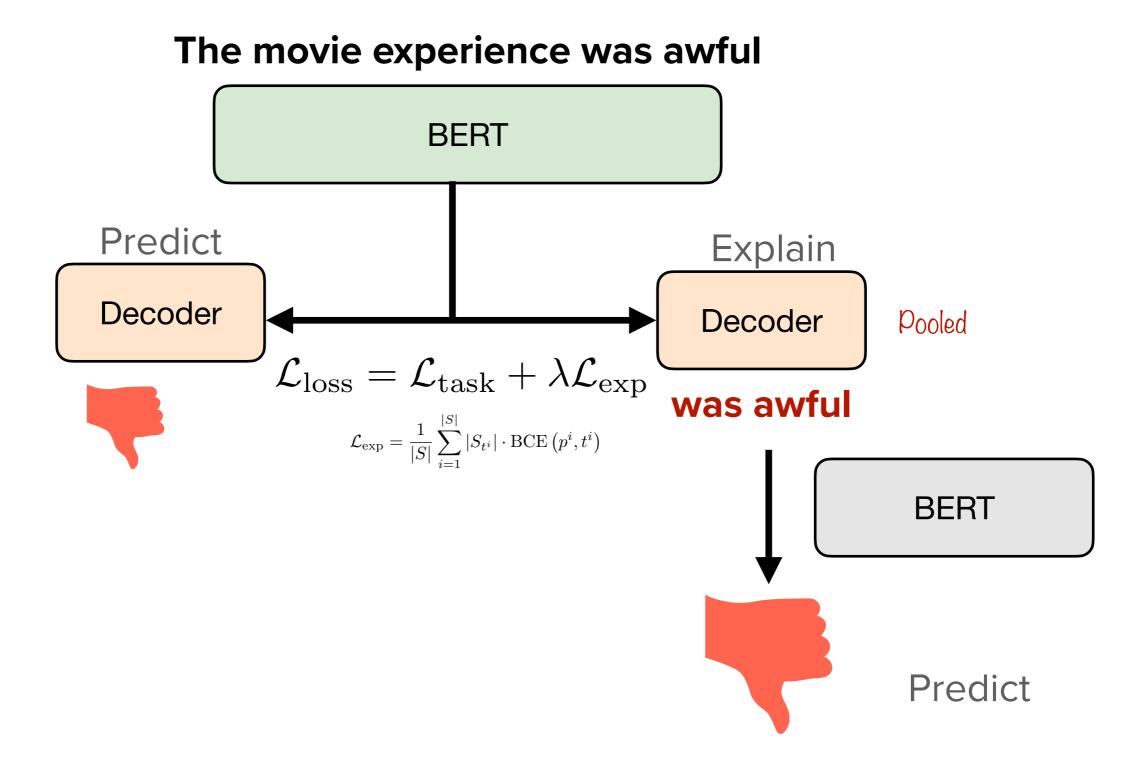
Multi-task Learning

$$\mathcal{L}_{ ext{loss}} = \mathcal{L}_{ ext{task}} + \lambda \mathcal{L}_{ ext{exp}}$$
 Enforce sparcity $\mathcal{L}_{ ext{exp}} = rac{1}{|S|} \sum_{i=1}^{|S|} |S_{t^i}| \cdot ext{BCE}\left(p^i, t^i
ight)$

Encoder representations regularised by explanation data

Explain and Predict, then Predict Again

Shared parameters during input encoding ensures that explanations are task aware



Explanation Performance

How human-like are the explanations?

Explanation accuracy — Macro Token-wise F1

Fact Checking

Question Answering

Sentiment Classification

No Explanation Data

0.83 No Explanation Data

0.43

No Explanation Data

ExPred

0.84

ExPred

0.64

ExPred

How much does Task Performance drop?

0.91

Full Input 0.70

Task accuracy — Macro F1

No Explanation Data

0.83

No Explanation Data

0.65

No Explanation Data

0.79

ExPred

Full Input

0.89

ExPred

0.69

ExPred

Full Input

0.91

0.89

0.32

0.35

Fact Checking

Query: san francisco bay area contains zero towns

Retrieved Document: the san francisco bay area, referred to locally as the bay area is a populous region surrounding the san francisco and san pablo estuaries in northern california. The region encompasses the major cities and metropolitan areas of san jose, san francisco, and Oakland, along with smaller urban and rural areas. The bay area's nine counties areSanta Clara, Solana and Sonoma. The combined statistical area of the region is the second largest in california after the Los Angeles area.

Fact Checking

Query: san francisco bay area contains zero towns

Retrieved Document: the san francisco bay area, referred to locally as the bay area is a populous region surrounding the san francisco and san pablo estuaries in northern california. The region encompasses the major cities and metropolitan areas of san jose, san francisco, and Oakland, along with smaller urban and rural areas. The bay area's nine counties areSanta Clara, Solana and Sonoma. The combined statistical area of the region is the second largest in california after the Los Angeles area.

Rationale-based approaches

Rationalization for Explainable NLP: A Survey

SAI GURRAPU, Department of Computer Science, Virginia Tech, USA

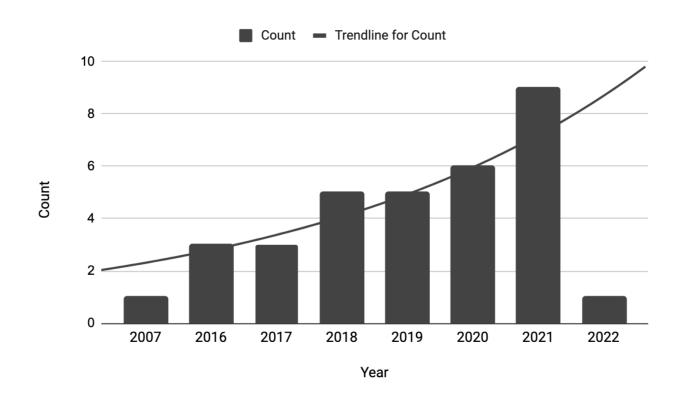
AJAY KULKARNI, Department of Computational and Data Sciences, George Mason University, USA

LIFU HUANG, Department of Computer Science, Virginia Tech, USA

ISMINI LOURENTZOU, Department of Computer Science, Virginia Tech, USA

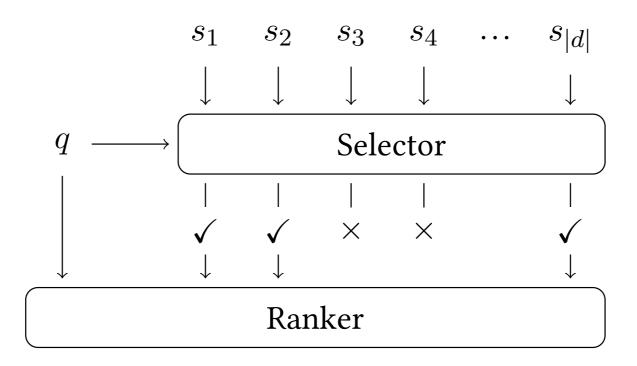
LAURA FREEMAN, Department of Statistics, Virginia Tech, USA

FERAS A. BATARSEH, Department of Electrical and Computer Engineering, Virginia Tech, USA



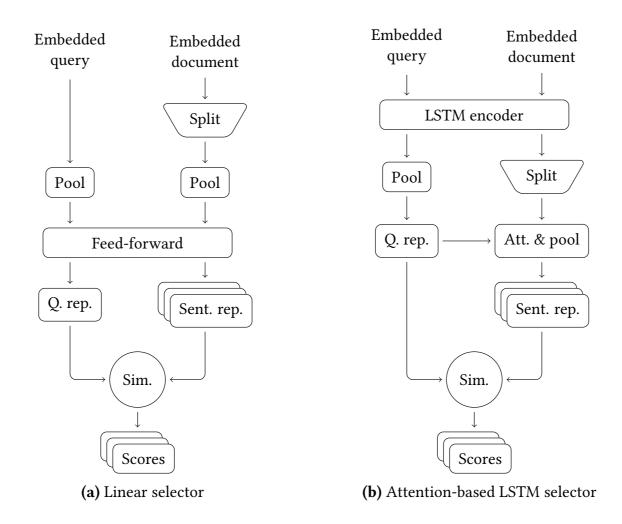
popular in NLP research

Rationales for ranking



Select and rank paradigm: Can we trade-off sparsity and ranking quality by controllably selecting a subset of sentences.

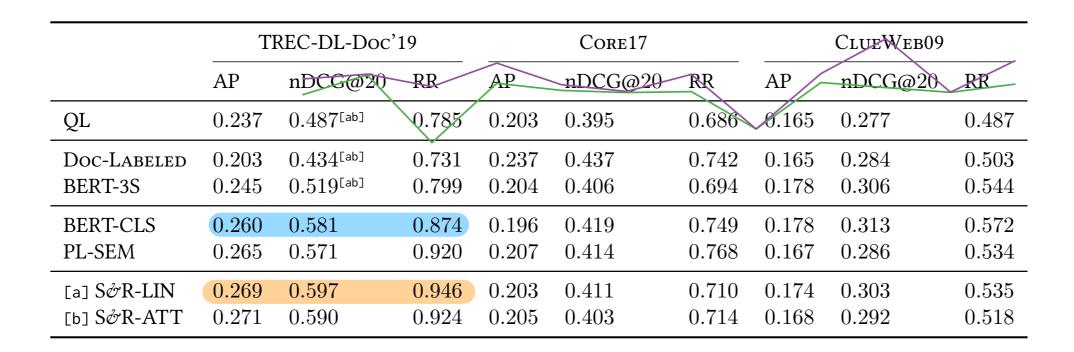
Selectors

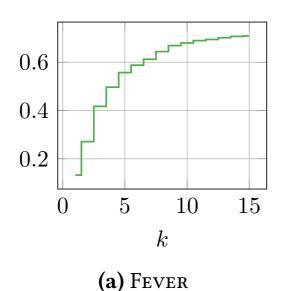


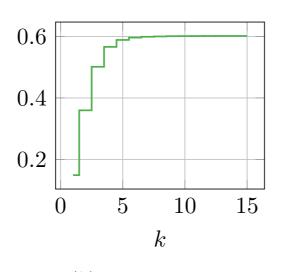
Selectors: Selectors should be simple for efficiency

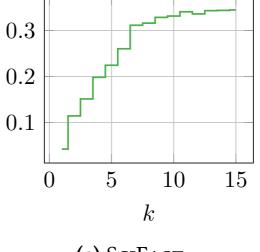
Optimizing selectors: Gumbel-max trick + relaxed subset sampling

Insights







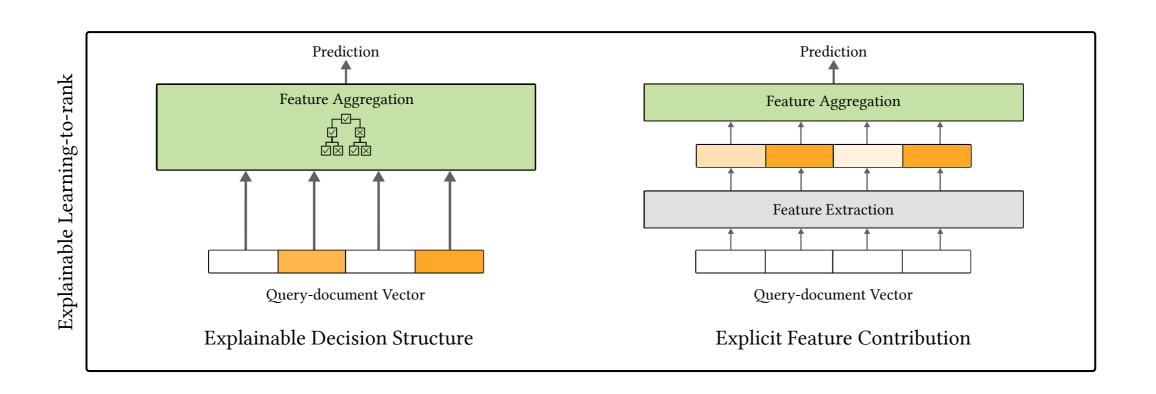


Extractive Explanations for Rankings

Query: san francisco bay area contains zero towns

Retrieved Document: the san francisco bay area, referred to locally as the bay area is a populous region surrounding the san francisco and san pablo estuaries in northern california. The region encompasses the major cities and metropolitan areas of san jose, san francisco, and Oakland, along with smaller urban and rural areas. The bay area's nine counties areSanta Clara, Solana and Sonoma. The combined statistical area of the region is the second largest in california after the Los Angeles area.

Learning-to-rank approaches



GAMs

Learning to rank with Generalized additive models

Interpretable Ranking with Generalized Additive Models

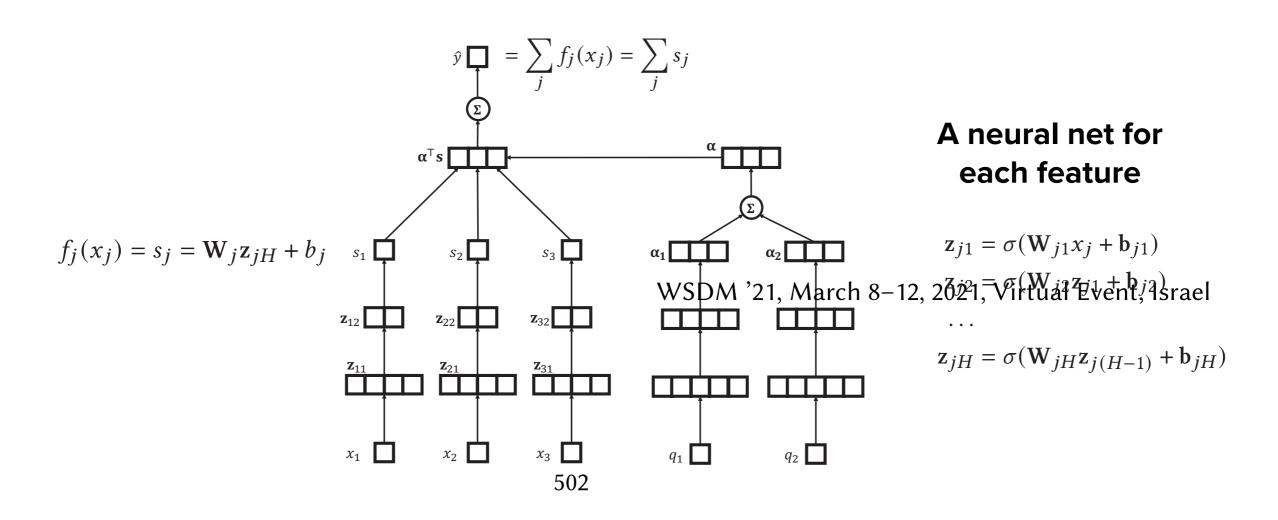
Honglei Zhuang, Xuanhui Wang, Michael Bendersky, Alexander Grushetsky, Yonghui Wu, Petr Mitrichev, Ethan Sterling, Nathan Bell, Walker Ravina, Hai Qian {hlz,xuanhui,bemike,grushetsky,yonghui,petya,esterling,nathanbell,walkerravina,hqian}@google.com Google

$$\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N \qquad \mathbf{x}_i = (x_{i1}, \dots, x_{in})$$

$$g(\hat{y}_i) = f_1(x_{i1}) + f_2(x_{i2}) + \cdots + f_n(x_{in})$$

A function for each feature

Ranking GAMs



$$S^* = \underset{S = \{(x_k, y_k)\}_{k=1}^K}{\min} \frac{1}{|\mathcal{D}|} \sum_{\mathcal{D}} ||f(x_i) - PWL_S(x_i)||^2$$

$$\int_{PWL_S(x)} e^{\left\{ y_1 + \frac{y_{k+1} - y_k}{x_{k+1} - x_k} (x - x_k) + y_k \text{ if } x_k \le x \le x_{k+1}, y_k \text{ if } x > x_K. \right\}$$

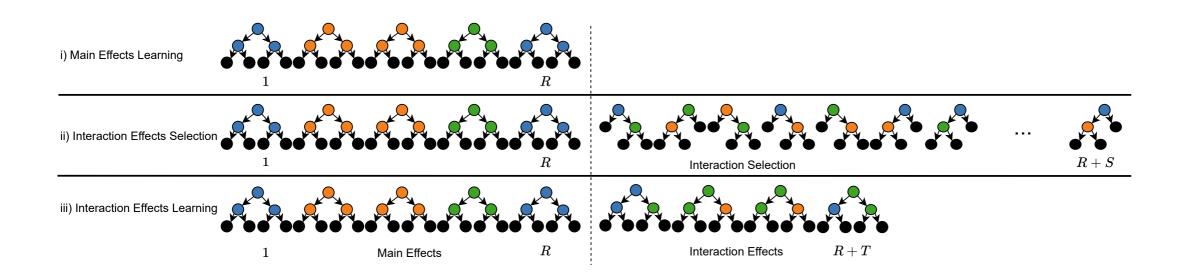
ILMART

Problem in GAMs: No interaction between features

$$\hat{y} = \underbrace{\sum_{j \in \mathcal{J}} \tau_j(x_j)}_{R \text{ trees}} + \underbrace{\sum_{(i,j) \in \mathcal{K}} \tau_{ij}(x_i, x_j)}_{T \text{ trees}}$$

Short Research Paper

SIGIR '22, July 11-15, 2022, Madrid, Spain

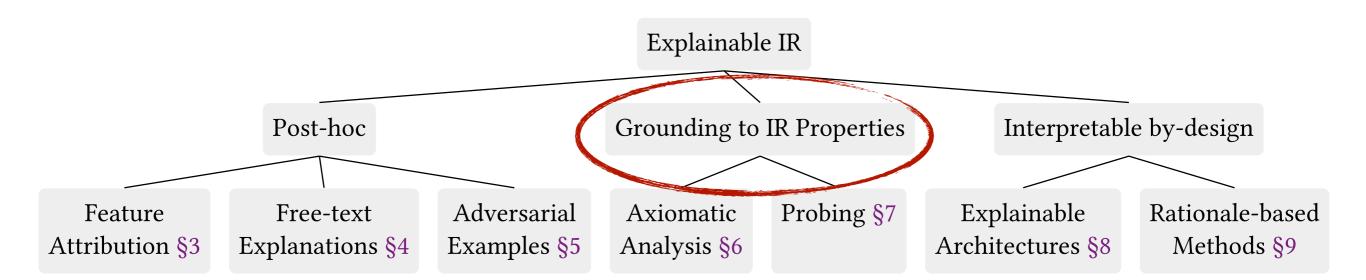


Interpretability Landscape

Explainable Information Retrieval: A Survey

https://arxiv.org/abs/2211.02405

AVISHEK ANAND and LIJUN LYU, Delft University of Technology, The Netherlands MAXIMILIAN IDAHL, YUMENG WANG, JONAS WALLAT, and ZIJIAN ZHANG, L3S Research Center, Leibniz University Hannover, Germany

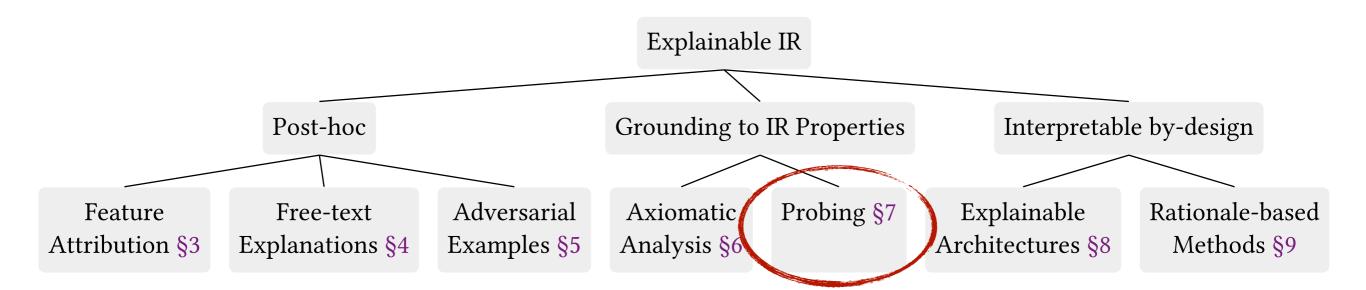


Interpretability Landscape

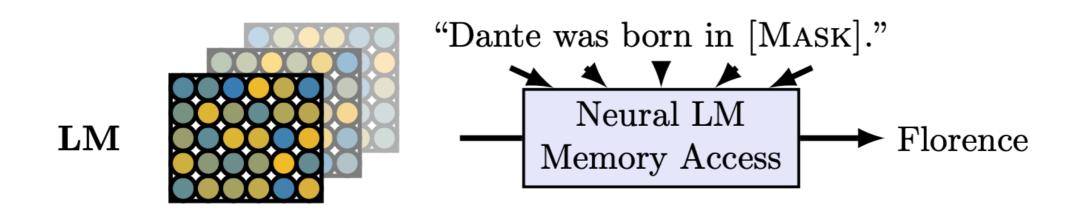
Explainable Information Retrieval: A Survey

https://arxiv.org/abs/2211.02405

AVISHEK ANAND and LIJUN LYU, Delft University of Technology, The Netherlands MAXIMILIAN IDAHL, YUMENG WANG, JONAS WALLAT, and ZIJIAN ZHANG, L3S Research Center, Leibniz University Hannover, Germany



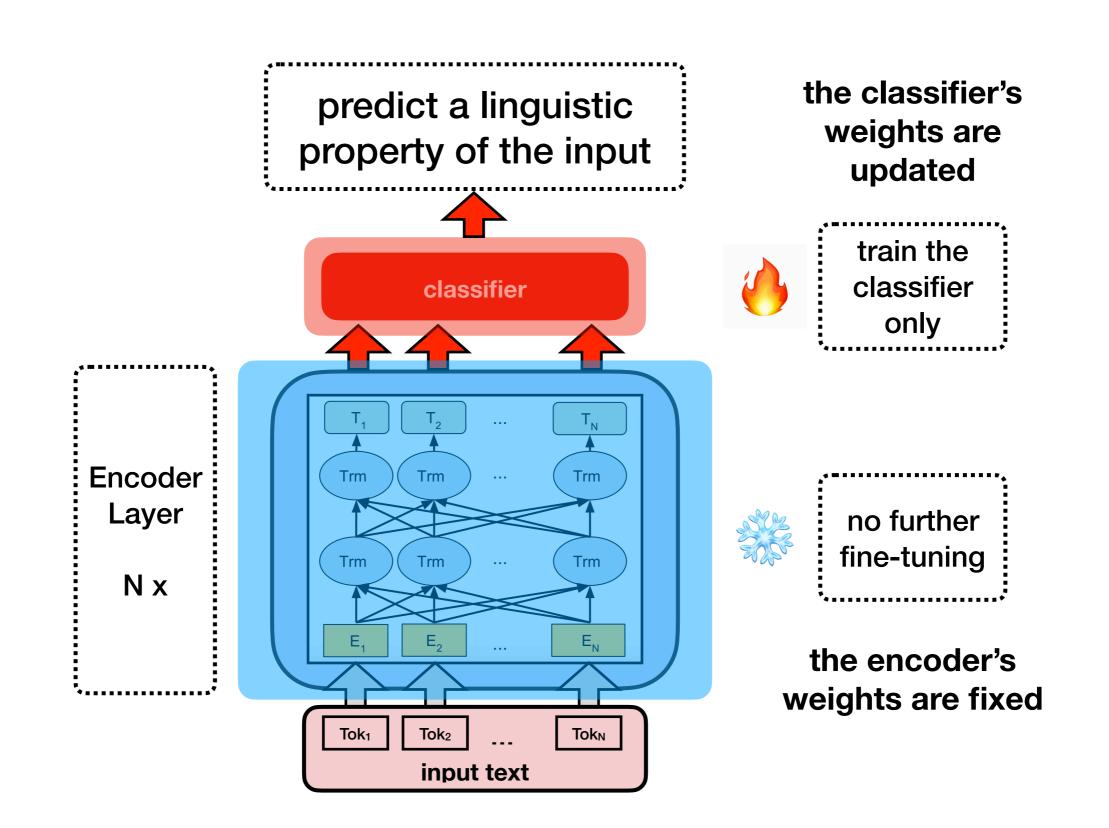
Probing Philosophy



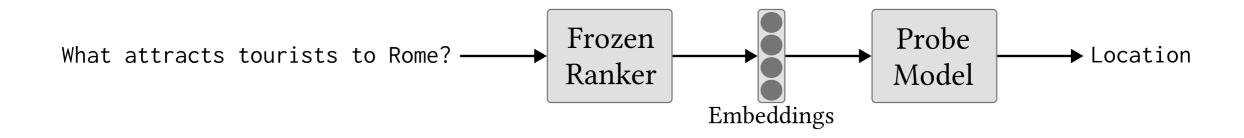
(Petroni et al., 2019)
If we can train a classifier to predict a property of the input text based on its representation, it
means the property is encoded somewhere in the representation

[petroni et al. 2019]

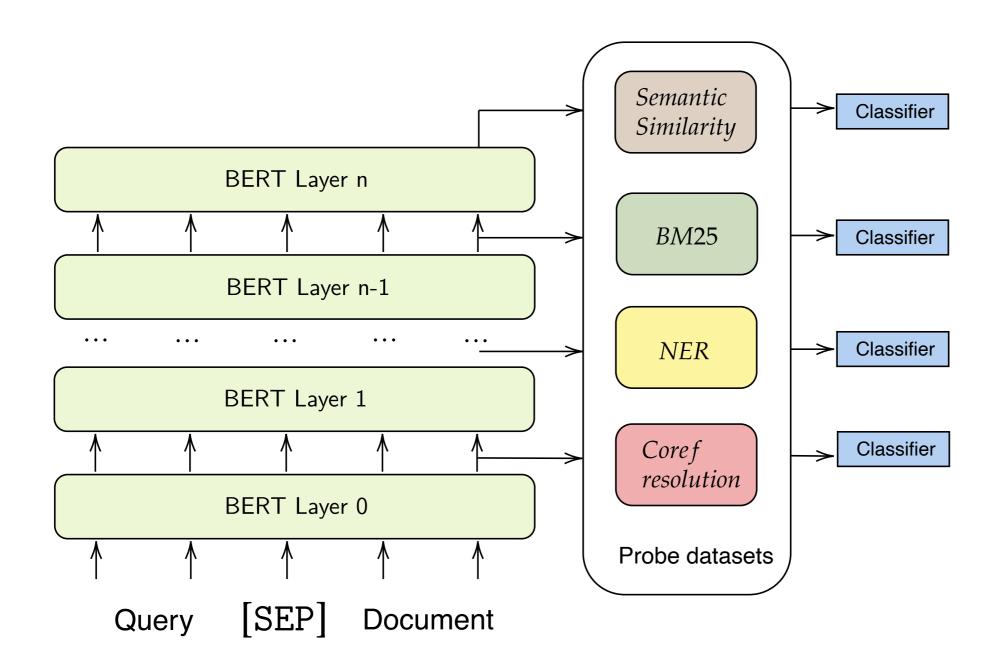
How do we probe?



Probing rankers



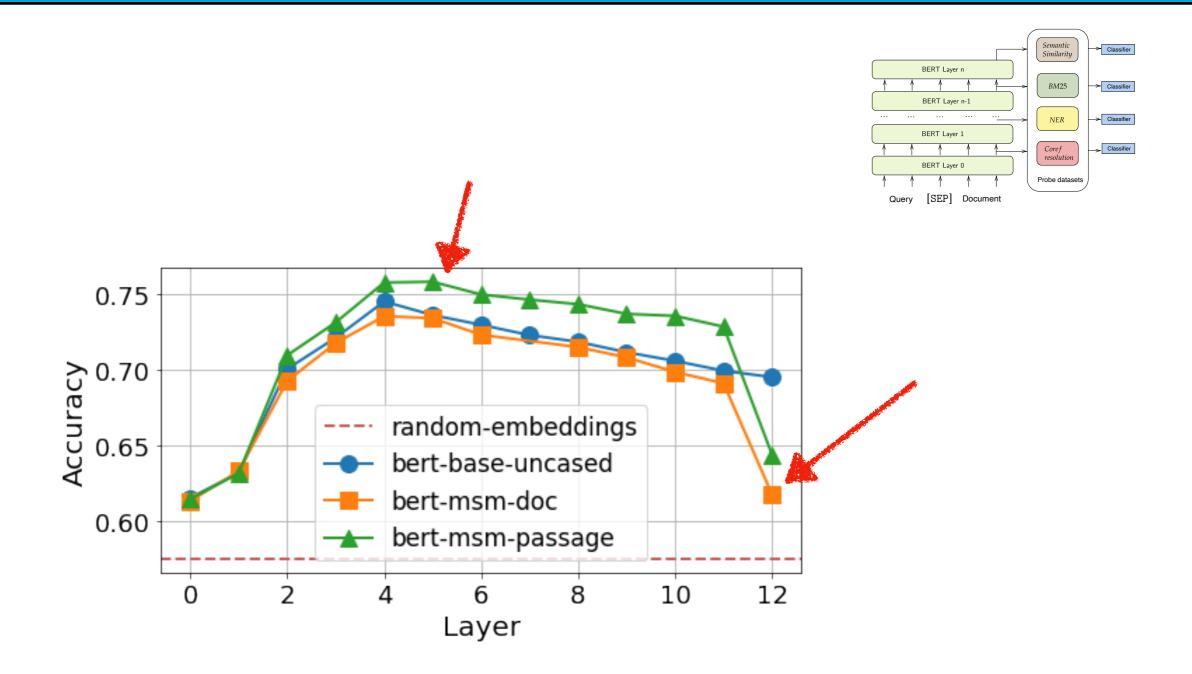
Probing Rankers



If the document representation can do well on a IR ability then it understands or exhibits that ability well...

[Wallat et al ECIR '23]

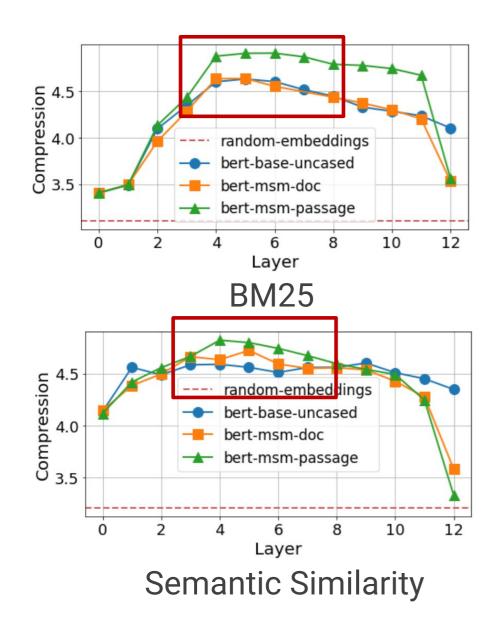
Probing Rankers

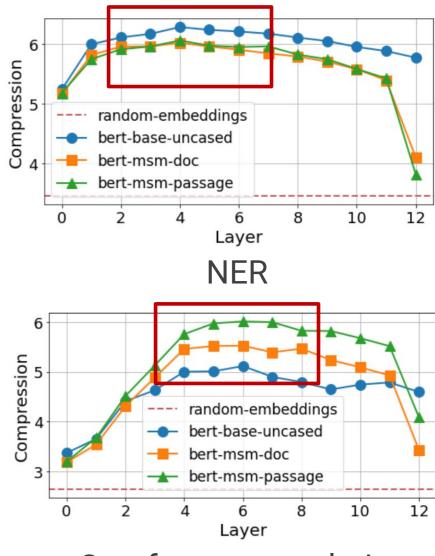


If the document representation can do well on a IR ability then it understands or exhibits that ability well...

[Wallat et al ECIR '23]

IR abilities in representation





Coreference resolution