

MACHINE COMPREHENSION

Machine Comprehension

Chris Burges 2013

"A machine **comprehends** a passage of **text** if, for any **question** regarding that text that can be **answered** correctly by a majority of native speakers, that machine can provide a string which those speakers would agree both answers that question, and does not contain information irrelevant to that question."

Problem Setting

As the seat of the government of Australia, Canberra is home to many important institutions of the federal government, national monuments and museums. Canberra is also the capital of the country.

The MRC Pipeline

- Words, characters, subwords embeddings
- Contextual Embeddings
- Other features Matching, Alignment, Language structure

- Sequential representation
- Contextual representation
- Attentive reading

- Attentive reading
- Attention flows
- Multiple input passes inputs
- Re-representation of question and passages

- Token prediction
- Span prediction
- Free-form generation

Token Representation

Question/Passage Representation

29

Question And Passage Interaction

Answer Generation

Attention Mechanism

Attention is used to represent tokens, question and passages

- How do we re-represent otherwise independent token representations ?
- How do we leverage contextualization ?
- Hard attention
- Soft Attention
- Co-attention
- Self-attention

Attention – Influence Point Of View

Attention encodes how much influence the context u has on x

Typically x and context vectors are first projected through a learnable matrix W

Attention Mechanism – Memory Point Of View

Attention retrieves values from a continuous memory using fuzzy matching

- Assume vectors are stored in memory referenced by Key matrix K
- Thought expt: for 1-hot vectors = hashmaps
- Instead Kx retrieves from this continuous memory as a weighted sum over all values

Attention weight

$$\alpha_u = \frac{e^{K\mathbf{x}\cdot K\mathbf{u}}}{e^{K\mathbf{x}\cdot K\mathbf{u}} + e^{K\mathbf{x}\cdot K\mathbf{v}} + e^{K\mathbf{x}\cdot K\mathbf{w}}}$$

Question Answering over Curated and Open Web Sources R. Saha Roy and A. Anand

SIGIR 2020 Tutorial

Key

V

W

u

Κ

Х

Κ

Κ

Κ

 $\mathbf{x}' = \alpha_u \mathbf{u} + \alpha_v \mathbf{v} + \alpha_w \mathbf{w}$

u

Values

V

puter science	
etrieval and natural	а

Reader

les from 5 million

on system): articles

Question Answering ov

73.7 WebQuestions **WikiMovies** 61.7 Logistic regression Fine-Grained Gating (C Match-14971917(\$1)nga Danasanestork BiDAF (UW & Allen In Ours r-net (MSR Asia State-of-the-art (July Human performar

26 July 2020

Pre-trained SQuAD model

DrQA [Chen'17]

Input Representation

- Context words are represented based on similarity with the query
- Semantic similarity
 - Word embeddings
- Matching similarity
 - Direct word-level matching
 - Weighted matching
 - Attention mechanism

MatchLSTM [Wang & Jiang '16], DCN [Xiong '16], BiDAF [Seo '17]

Late Interaction

- First encode question and context sufficiently
- Choice of encoders
 - Bi-LSTMs
 - Conv Nets
- Most popular Model
 - Bi-directional attention flow [Seo '17]

Answer Prediction

Other Variants

Question Answering over Curated and Open Web Sources R. Saha Roy and A. Anand SIGIR 2020 Tutorial 26 July 2020

Attention Based Architectures

2016 – 2017 – Multitude of attention based architecture

(1) Word-level fusion, (2) high-level fusion, (2') high-level fusion (alternative), (3) self-boosted fusion, and (3') self-boosted fusion (alternative).

Contextual Language Models

- BERT No Recurrence, only attention
- Re-representing each token based on the context
- Shows the most promising performance

- Bi-directional : Transformer encoder reads the entire sequence of words at once.
 - Learns the context of a word based on all of its surroundings (left and right of the word).

BERT– Masked Language Model

Masked word prediction

- Given a sentence with some words masked at random, can we predict them?
- Randomly select 15% of tokens to be replaced with "<MASK>"

Next Sentence Prediction

- Given two sentences, does the first follow the second? Teaches BERT about relationship between two sentences
- 50% of the time the actual next sentence, 50% random

BERT Fine Tuning

Inputs to BERT – [CLS] <token embeddings> [SEP] ...

 Classification tasks such as sentiment analysis are done similarly to Next Sentence classification, by adding a classification layer on top of the Transformer output for the [CLS] token.

BERT Fine Tuning

Q&A model can be trained by learning two extra vectors that mark the beginning and the end of the answer.

