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§ TriviaQA [Joshi et al., 2017]  

§ SearchQA [Dunn et al., 2017]

§ Quasar-T [Dhingra et al., 2017]

§ Natural Questions 
[Kwiatkowski et al., 2019] 

Repurposed for ODQA
§ SQuAD [Rajpurkar et al., 2016] 

§ CuratedTREC [Baudis & Sedivy, 2015] 

§ WebQuestions [Berant et al., 2013] 

§ WikiMovies [Miller et al., 2016] 

Open-Domain QA Datasets  
used in ORQA [Lee et al., 2019]

• Natural Questions 
• Questions with short answers (<5 tokens) 

• WebQuestions [Berant et al., 2013] 
• Questions sampled using Google Suggest API 
• Answers are Freebase entities 

• CuratedTREC [Baudis & Sedivy, 2015] 
• Questions from TREC-QA; askers do not 

observe evidence doc. 

• TriviaQA 
• Questions from the unfiltered set (i.e., all 

questions) 
• OpenSQuAD [Rajpurkar et al., 2016] 

• Questions from SQuAD v1.1; askers do see 
the context (Wikipedia paragraph)
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Dataset Train Val Test

NQ 79,168 8,757 3,610

WebQ 3,417 361 2,032

TREC 1,353 133 694

TriviaQA 78,785 8,837 11,313

SQuAD 78,713 8,886 10,570

 
Lee et al., 2019. Latent Retrieval for Weakly Supervised Open Domain Question Answering

Trivia questions Web pages from BING search

Jeopardy Google search snippets

Reddit ClueWeb09

Google queries Wikipedia pages in results
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§ Exact Match: measures whether the two strings, after preprocessing, are equal or not. 

§ F1 Measure: measures the overlap between the two bags of tokens in answers, after preprocessing

§ Entity Match
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Token Representation
Passage

Representation

Question
Representation

Question Passage
Interaction Answer GenerationRetrieverLarge doc. 

collection

Retrieved 
docs./passages

• BM25 on unigrams
and bi-grams

• Vector Index

Use your favorite MRC model
• Attentive reader (DrQA)
• BiDaf (Seo 17)
• BERT (Bertserini)

51

How is the reader model trained ? 
Using an existing QA dataset (e.g. SQUAD)

How does it answer questions ?
Independently find answers for tok-

k passage and return the most 
“probable” span
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Retriever
- Using Anserini (based on Lucene)
- Segments = sentence/passage are indexed
- Retrieved sentences are scored using BM25

Reader

eschew retrieval entirely, since there is only a sin-
gle document from which to extract answers.

In contrast, what we refer to as “end-to-end”
question answering begins with a large corpus of
documents. Since it is impractical to apply in-
ference exhaustively to all documents in a cor-
pus with current models (mostly based on neural
networks), this formulation necessarily requires
some type of term-based retrieval technique to
restrict the input text under consideration—and
hence an architecture quite like the pipelined sys-
tems from over a decade ago. Recently, there has
been a resurgence of interest in this task, the most
notable of which is Dr.QA (Chen et al., 2017).
Other recent papers have examined the role of re-
trieval in this end-to-end formulation (Wang et al.,
2017; Kratzwald and Feuerriegel, 2018; Lee et al.,
2018), some of which have, in essence, rediscov-
ered ideas from the late 1990s and early 2000s.

For a wide range of applications, researchers
have recently demonstrated the effectiveness of
neural models that have been pretrained on a lan-
guage modeling task (Peters et al., 2018; Rad-
ford et al., 2018); BERT (Devlin et al., 2018)
is the latest refinement of this idea. Our work
tackles end-to-end question answering by combin-
ing BERT with Anserini, an IR toolkit built on
top of the popular open-source Lucene search en-
gine. Anserini (Yang et al., 2017, 2018) repre-
sents recent efforts by researchers to bring aca-
demic IR into better alignment with the practice
of building real-world search applications, where
Lucene has become the de facto platform used in
industry. Through an emphasis on rigorous soft-
ware engineering and regression testing for repli-
cability, Anserini codifies IR best practices to-
day. Recently, Lin (2018) showed that a well-
tuned Anserini implementation of a query expan-
sion model proposed over a decade ago still beats
two recent neural models for document ranking.
Thus, BERT and Anserini represent solid founda-
tions on which to build an end-to-end question an-
swering system.

3 System Architecture

The architecture of BERTserini is shown in Fig-
ure 1 and is comprised of two main modules, the
Anserini retriever and the BERT reader. The re-
triever is responsible for selecting segments of text
that contain the answer, which is then passed to
the reader to identify an answer span. To facilitate

Anserini Retriever

Inverted
Index

Question

top k segments

AnswerFine-tuned
BERT +

BERT Reader

segment score

span
score

Pretrained 
BERT

Indexing Fine-tuning on SQuAD

Figure 1: Architecture of BERTserini.

comparisons to previous work, we use the same
Wikipedia corpus described in Chen et al. (2017)
(from Dec. 2016) comprising 5.08M articles. In
what follows, we describe each module in turn.

3.1 Anserini Retriever

For simplicity, we adopted a single-stage retriever
that directly identifies segments of text from
Wikipedia to pass to the BERT reader—as op-
posed to a multi-stage retriever that first retrieves
documents and then ranks passages within. How-
ever, to increase flexibility, we experimented with
different granularities of text at indexing time:

Article: The 5.08M Wikipedia articles are directly
indexed; that is, an article is the unit of retrieval.

Paragraph: The corpus is pre-segmented into
29.5M paragraphs and indexed, where each para-
graph is treated as a “document” (i.e., the unit of
retrieval).

Sentence: The corpus is pre-segmented into
79.5M sentences and indexed, where each sen-
tence is treated as a “document”.

At inference time, we retrieve k text segments (one
of the above conditions) using the question as a
“bag of words” query. We use a post-v0.3.0 branch
of Anserini,1 with BM25 as the ranking function
(Anserini’s default parameters).

3.2 BERT Reader

Text segments from the retriever are passed to the
BERT reader. We use the model in Devlin et al.
(2018), but with one important difference: to al-
low comparison and aggregation of results from
different segments, we remove the final softmax
layer over different answer spans; cf. (Clark and
Gardner, 2018).

Our BERT reader is based on Google’s refer-
ence implementation2 (TensorFlow 1.12.0). For

1http://anserini.io/
2https://github.com/google-research/bert

[Yang et al. ‘19]

- Fine-tuned BERT on SQUAD
- Final score is interpolation of

- Span score
- BM25(segment)

Squad
(EM)

drqa

bert
29.8

38.6



How do exploit the collection for a better reader model ?

How do we aggregate evidence in retrieved passages ?

How do we exploit reader state to re-retrieve more relevant passages ?
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Question1: What is the more popular name for the londonderry air? 

A1: tune from county
P1: the best known title for this melody is londonderry air - lrb- sometimes also called the tune 
from county derry -rrb- . 

A2: danny boy 
P1: londonderry air words : this melody is more commonly known with the words `` danny boy '' 
P2: londonderry air danny boy music ftse london i love you . 
P3: danny boy limavady is most famous for the tune londonderry air collected by jane ross in the 
mid-19th century from a local fiddle player . 
P4: it was here that jane ross noted down the famous londonderry air -lrb- ` danny boy ' -rrb- from 
a passing fiddler . 
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Question2: Which physicist, mathematician and astronomer
discovered the first 4 moons of Jupiter

A1: Isaac Newton 
P1: Sir Isaac Newton was an English physicist , mathematician , astronomer , natural
philosopher , alchemist and theologian ...
P2: Sir Isaac Newton was an English mathematician, astronomer, and physicist who is
widely recognized as one of the most influential scientists ... 

A2: Galileo Galilei 
P1: Galileo Galilei was an Italian physicist , mathematician , astronomer , and philosopher
who played a major role in the Scientific Revolution . 
P2: Galileo Galilei is credited with discovering the first four moons of Jupiter . 
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Figure 2: An overview of the full re-ranker. It consists of strength-based and coverage-based re-
ranking.

Overall, our contributions are as follows: 1) We propose a re-ranking-based framework to make use
of the evidence from multiple passages in open-domain QA, and two re-rankers, namely, a strength-
based re-ranker and a coverage-based re-ranker, to perform evidence aggregation in existing open-
domain QA datasets. We find the second re-ranker performs better than the first one on two of the
three public datasets. 2) Our proposed approach leads to the state-of-the-art results on three different
datasets (Quasar-T (Dhingra et al., 2017b), SearchQA (Dunn et al., 2017) and TriviaQA (Joshi
et al., 2017)) and outperforms previous state of the art by large margins. In particular, we achieved
up to 8% improvement on F1 on both Quasar-T and SearchQA compared to the previous best results.

2 METHOD

Given a question q, we are trying to find the correct answer ag to q using information retrieved
from the web. Our method proceeds in two phases. First, we run an IR model (with the help of a
search engine such as google or bing) to find the top-N web passages p1, p2, . . . , pN most related
to the question. Then a reading comprehension (RC) model is used to extract the answer from
these passages. This setting is different from standard reading comprehension tasks (e.g. (Rajpurkar
et al., 2016)), where a single fixed passage is given, from which the answer is to be extracted.
When developing a reading comprehension system, we can use the specific positions of the answer
sequence in the given passage for training. By contrast, in the open-domain setting, the RC models
are usually trained under distant supervision (Chen et al., 2017; Dhingra et al., 2017b; Joshi et al.,
2017). Specifically, since the training data does not have labels indicating the positions of the answer
spans in the passages, during the training stage, the RC model will match all passages that contain
the ground-truth answer with the question one by one. In this paper we apply an existing RC model
called R3 (Wang et al., 2017) to extract these candidate answers.

After the candidate answers are extracted, we aggregate evidence from multiple passages by re-
ranking the answer candidates. Given a question q, suppose we have a baseline open-domain QA
system that can generate the top-K answer candidates a1, . . . ,aK , each being a text span in some
passage pi. The goal of the re-ranker is to rank this list of candidates so that the top-ranked can-
didates are more likely to be the correct answer ag . With access to these additional features, the
re-ranking step has the potential to prioritize answers not easily discoverable by the base system
alone. We investigate two re-ranking strategies based on evidence strength and evidence coverage.
An overview of our method is shown in Figure 2.

3

§ For each candidate answer, re-rank retrieved passages based on 
§ Support – counts 
§ Coverage – attention mechanism

[Wang et al.’ 18]
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based re-ranker and a coverage-based re-ranker, to perform evidence aggregation in existing open-
domain QA datasets. We find the second re-ranker performs better than the first one on two of the
three public datasets. 2) Our proposed approach leads to the state-of-the-art results on three different
datasets (Quasar-T (Dhingra et al., 2017b), SearchQA (Dunn et al., 2017) and TriviaQA (Joshi
et al., 2017)) and outperforms previous state of the art by large margins. In particular, we achieved
up to 8% improvement on F1 on both Quasar-T and SearchQA compared to the previous best results.
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Given a question q, we are trying to find the correct answer ag to q using information retrieved
from the web. Our method proceeds in two phases. First, we run an IR model (with the help of a
search engine such as google or bing) to find the top-N web passages p1, p2, . . . , pN most related
to the question. Then a reading comprehension (RC) model is used to extract the answer from
these passages. This setting is different from standard reading comprehension tasks (e.g. (Rajpurkar
et al., 2016)), where a single fixed passage is given, from which the answer is to be extracted.
When developing a reading comprehension system, we can use the specific positions of the answer
sequence in the given passage for training. By contrast, in the open-domain setting, the RC models
are usually trained under distant supervision (Chen et al., 2017; Dhingra et al., 2017b; Joshi et al.,
2017). Specifically, since the training data does not have labels indicating the positions of the answer
spans in the passages, during the training stage, the RC model will match all passages that contain
the ground-truth answer with the question one by one. In this paper we apply an existing RC model
called R3 (Wang et al., 2017) to extract these candidate answers.

After the candidate answers are extracted, we aggregate evidence from multiple passages by re-
ranking the answer candidates. Given a question q, suppose we have a baseline open-domain QA
system that can generate the top-K answer candidates a1, . . . ,aK , each being a text span in some
passage pi. The goal of the re-ranker is to rank this list of candidates so that the top-ranked can-
didates are more likely to be the correct answer ag . With access to these additional features, the
re-ranking step has the potential to prioritize answers not easily discoverable by the base system
alone. We investigate two re-ranking strategies based on evidence strength and evidence coverage.
An overview of our method is shown in Figure 2.
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ranking.

Overall, our contributions are as follows: 1) We propose a re-ranking-based framework to make use
of the evidence from multiple passages in open-domain QA, and two re-rankers, namely, a strength-
based re-ranker and a coverage-based re-ranker, to perform evidence aggregation in existing open-
domain QA datasets. We find the second re-ranker performs better than the first one on two of the
three public datasets. 2) Our proposed approach leads to the state-of-the-art results on three different
datasets (Quasar-T (Dhingra et al., 2017b), SearchQA (Dunn et al., 2017) and TriviaQA (Joshi
et al., 2017)) and outperforms previous state of the art by large margins. In particular, we achieved
up to 8% improvement on F1 on both Quasar-T and SearchQA compared to the previous best results.

2 METHOD

Given a question q, we are trying to find the correct answer ag to q using information retrieved
from the web. Our method proceeds in two phases. First, we run an IR model (with the help of a
search engine such as google or bing) to find the top-N web passages p1, p2, . . . , pN most related
to the question. Then a reading comprehension (RC) model is used to extract the answer from
these passages. This setting is different from standard reading comprehension tasks (e.g. (Rajpurkar
et al., 2016)), where a single fixed passage is given, from which the answer is to be extracted.
When developing a reading comprehension system, we can use the specific positions of the answer
sequence in the given passage for training. By contrast, in the open-domain setting, the RC models
are usually trained under distant supervision (Chen et al., 2017; Dhingra et al., 2017b; Joshi et al.,
2017). Specifically, since the training data does not have labels indicating the positions of the answer
spans in the passages, during the training stage, the RC model will match all passages that contain
the ground-truth answer with the question one by one. In this paper we apply an existing RC model
called R3 (Wang et al., 2017) to extract these candidate answers.

After the candidate answers are extracted, we aggregate evidence from multiple passages by re-
ranking the answer candidates. Given a question q, suppose we have a baseline open-domain QA
system that can generate the top-K answer candidates a1, . . . ,aK , each being a text span in some
passage pi. The goal of the re-ranker is to rank this list of candidates so that the top-ranked can-
didates are more likely to be the correct answer ag . With access to these additional features, the
re-ranking step has the potential to prioritize answers not easily discoverable by the base system
alone. We investigate two re-ranking strategies based on evidence strength and evidence coverage.
An overview of our method is shown in Figure 2.
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BM25 on unigrams and bi-grams

[Chen et al. ‘17]

Use your favorite MRC model

§ In MRC training data – (question, passage, answer)

§ Distance Supervision
§ Create extra (question, passage, answer) triples
§ Simple Idea: Add all retrieved passages that mention the answer

Exploit information about the question that is ignored in retrieved passages 
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§ Add all retrieved passages that mention the answer

§ Which passages to learn from ?
§ Liberal addition 

§ All passages in the corpus containing answer added
§ All retrieved passages

§ Restrictive addition
§ Named entities constraints, passage length limits

§ Noise in vanilla DS 
§ Noise due to indiscriminate addition DSQA Model [Lin et al, ’18]

§ Information loss due to filtered paragraphs  DRQA [Chen ‘17]

§ Noise due to increasing collection sizes and retrieval depth [Kratzwald & Feuerriegel ‘18]
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Question: What is the capital of Ireland? 

A: Dublin 

P1: As the capital of Ireland, Dublin is ...
P2: Ireland is an island in the North Atlantic...
P3: Dublin is the capital of Ireland. Besides, Ottawa is one of famous tourist cities in Ireland and ... 

§ Key Idea: Select passages judiciously from the retrieved docs/passages

61
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and coverage-based re-ranking approaches, which
can aggregate the results extracted from each para-
graph by existing DS-QA system to better deter-
mine the answer. However, the method relies on
the pre-extracted answers of existing DS-QA mod-
els and still suffers from the noise issue in distant
supervision data because it considers all retrieved
paragraphs indiscriminately. Different from these
methods, our model employs a paragraph selector
to filter out those noisy paragraphs and keep those
informative paragraphs, which can make full use
of the noisy DS-QA data.

Our work is also inspired by the idea of coarse-
to-fine models in NLP. Cheng and Lapata (2016)
and Choi et al. (2017) propose a coarse-to-fine
model, which first selects essential sentences and
then performs text summarization or reading com-
prehension on the chosen sentences respectively.
Lin et al. (2016) utilize selective attention to ag-
gregate the information of all sentences to extract
relational facts. Yang et al. (2016) propose a hier-
archical attention network which has two levels of
attentions applied at the word and sentence level
for document classification. Our model also em-
ploys a coarse-to-fine model to handle the noise
issue in DS-QA, which first selects informative re-
trieved paragraphs and then extracts answers from
those selected paragraphs.

3 Methodology

In this section, we will introduce our model in de-
tails. Our model aims to extract the answer to a
given question in the large-scale unlabeled corpus.
We first retrieve paragraphs corresponding to the
question from the open-domain corpus using in-
formation retrieval technique, and then extract the
answer from these retrieved paragraphs.

Formally, given a question q =
(q1, q2, · · · , q|q|), we retrieve m paragraphs
which are defined as P = {p1, p2, · · · , pm}
where pi = (p1i , p

2
i , · · · , p

|pi|
i ) is the i-th retrieved

paragraph. Our model measures the probability
of extracting answer a given question q and
corresponding paragraph set P . As illustrated in
Fig. 1, our model contains two parts:

1. Paragraph Selector. Given the ques-
tion q and the retrieved paragraph P , the para-
graph selector measures the probability distri-
bution Pr(pi|q, P ) over all retrieved paragraphs,
which is used to select the paragraph that really
contains the answer of question q.

2. Paragraph Reader. Given the question q
and a paragraph pi, the paragraph reader calculates
the probability Pr(a|q, pi) of extracting answer a
through a multi-layer long short-term memory net-
work.

Overall, the probability Pr(a|q, P ) of extracting
answer a given question q can be calculated as:

Pr(a|q, P ) =
X

pi2P
Pr(a|q, pi) Pr(pi|q, P ). (1)

3.1 Paragraph Selector
Since the wrong labeling problem inevitably oc-
curs in DS-QA data, we need to filter out those
noisy paragraphs when exploiting the information
of all retrieved paragraphs. It is straightforward
that we need to estimate the confidence of each
paragraph. Hence, we employ a paragraph selec-
tor to measure the probability of each paragraph
containing the answer among all paragraphs.

Paragraph Encoding. We first represent each
word pji in the paragraph pi as a word vector pj

i ,
and then feed each word vector into a neural net-
work to obtain the hidden representation p̂j

i . Here,
we adopt two types of neural networks including:
1. Multi-Layer Perceptron (MLP)

p̂j
i = MLP(pj

i ), (2)

2. Recurrent Neural Network (RNN)

{p̂1
i , p̂

2
i , · · · , p̂

|pi|
i } = RNN({p1

i ,p
2
i , · · · ,p

|pi|
i }),

(3)
where p̂j

i is expected to encode semantic informa-
tion of word pji and its surrounding words. For
RNN, we select a single-layer bidirectional long
short-term memory network (LSTM) as our RNN
unit, and concatenate the hidden states of all layers
to obtain p̂j

i .
Question Encoding. Similar to paragraph en-

coding, we also represent each word qi in the ques-
tion as its word vector qi, and then fed them into
a MLP:

q̂j
i = MLP(qj

i ), (4)

or a RNN:

{q̂1, q̂2, · · · , q̂|q|} = RNN({q1,q2, · · · ,q|q|}).
(5)

where q̂j is the hidden representation of the word
qj and is expected to encode the context informa-
tion of it. After that, we apply a self attention op-
eration on the hidden representations to obtain the

Likelihood of the passage 
containing the answer

Likelihood of the answer 
given a cand. passage

[Wang et al. ‘18]
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and coverage-based re-ranking approaches, which
can aggregate the results extracted from each para-
graph by existing DS-QA system to better deter-
mine the answer. However, the method relies on
the pre-extracted answers of existing DS-QA mod-
els and still suffers from the noise issue in distant
supervision data because it considers all retrieved
paragraphs indiscriminately. Different from these
methods, our model employs a paragraph selector
to filter out those noisy paragraphs and keep those
informative paragraphs, which can make full use
of the noisy DS-QA data.

Our work is also inspired by the idea of coarse-
to-fine models in NLP. Cheng and Lapata (2016)
and Choi et al. (2017) propose a coarse-to-fine
model, which first selects essential sentences and
then performs text summarization or reading com-
prehension on the chosen sentences respectively.
Lin et al. (2016) utilize selective attention to ag-
gregate the information of all sentences to extract
relational facts. Yang et al. (2016) propose a hier-
archical attention network which has two levels of
attentions applied at the word and sentence level
for document classification. Our model also em-
ploys a coarse-to-fine model to handle the noise
issue in DS-QA, which first selects informative re-
trieved paragraphs and then extracts answers from
those selected paragraphs.

3 Methodology

In this section, we will introduce our model in de-
tails. Our model aims to extract the answer to a
given question in the large-scale unlabeled corpus.
We first retrieve paragraphs corresponding to the
question from the open-domain corpus using in-
formation retrieval technique, and then extract the
answer from these retrieved paragraphs.

Formally, given a question q =
(q1, q2, · · · , q|q|), we retrieve m paragraphs
which are defined as P = {p1, p2, · · · , pm}
where pi = (p1i , p

2
i , · · · , p

|pi|
i ) is the i-th retrieved

paragraph. Our model measures the probability
of extracting answer a given question q and
corresponding paragraph set P . As illustrated in
Fig. 1, our model contains two parts:

1. Paragraph Selector. Given the ques-
tion q and the retrieved paragraph P , the para-
graph selector measures the probability distri-
bution Pr(pi|q, P ) over all retrieved paragraphs,
which is used to select the paragraph that really
contains the answer of question q.

2. Paragraph Reader. Given the question q
and a paragraph pi, the paragraph reader calculates
the probability Pr(a|q, pi) of extracting answer a
through a multi-layer long short-term memory net-
work.

Overall, the probability Pr(a|q, P ) of extracting
answer a given question q can be calculated as:

Pr(a|q, P ) =
X

pi2P
Pr(a|q, pi) Pr(pi|q, P ). (1)

3.1 Paragraph Selector
Since the wrong labeling problem inevitably oc-
curs in DS-QA data, we need to filter out those
noisy paragraphs when exploiting the information
of all retrieved paragraphs. It is straightforward
that we need to estimate the confidence of each
paragraph. Hence, we employ a paragraph selec-
tor to measure the probability of each paragraph
containing the answer among all paragraphs.

Paragraph Encoding. We first represent each
word pji in the paragraph pi as a word vector pj

i ,
and then feed each word vector into a neural net-
work to obtain the hidden representation p̂j

i . Here,
we adopt two types of neural networks including:
1. Multi-Layer Perceptron (MLP)

p̂j
i = MLP(pj

i ), (2)

2. Recurrent Neural Network (RNN)

{p̂1
i , p̂

2
i , · · · , p̂

|pi|
i } = RNN({p1

i ,p
2
i , · · · ,p

|pi|
i }),

(3)
where p̂j

i is expected to encode semantic informa-
tion of word pji and its surrounding words. For
RNN, we select a single-layer bidirectional long
short-term memory network (LSTM) as our RNN
unit, and concatenate the hidden states of all layers
to obtain p̂j

i .
Question Encoding. Similar to paragraph en-

coding, we also represent each word qi in the ques-
tion as its word vector qi, and then fed them into
a MLP:

q̂j
i = MLP(qj

i ), (4)

or a RNN:

{q̂1, q̂2, · · · , q̂|q|} = RNN({q1,q2, · · · ,q|q|}).
(5)

where q̂j is the hidden representation of the word
qj and is expected to encode the context informa-
tion of it. After that, we apply a self attention op-
eration on the hidden representations to obtain the

Question: What is the capital of 
Ireland? 

A: Dublin 

P1: As the capital of Ireland, Dublin is ...
P2: Ireland is an island in the North Atlantic...
P3: Dublin is the capital of Ireland. Besides, 
Ottawa is one of famous tourist cities in Ireland 
and ... 

q
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and coverage-based re-ranking approaches, which
can aggregate the results extracted from each para-
graph by existing DS-QA system to better deter-
mine the answer. However, the method relies on
the pre-extracted answers of existing DS-QA mod-
els and still suffers from the noise issue in distant
supervision data because it considers all retrieved
paragraphs indiscriminately. Different from these
methods, our model employs a paragraph selector
to filter out those noisy paragraphs and keep those
informative paragraphs, which can make full use
of the noisy DS-QA data.

Our work is also inspired by the idea of coarse-
to-fine models in NLP. Cheng and Lapata (2016)
and Choi et al. (2017) propose a coarse-to-fine
model, which first selects essential sentences and
then performs text summarization or reading com-
prehension on the chosen sentences respectively.
Lin et al. (2016) utilize selective attention to ag-
gregate the information of all sentences to extract
relational facts. Yang et al. (2016) propose a hier-
archical attention network which has two levels of
attentions applied at the word and sentence level
for document classification. Our model also em-
ploys a coarse-to-fine model to handle the noise
issue in DS-QA, which first selects informative re-
trieved paragraphs and then extracts answers from
those selected paragraphs.

3 Methodology

In this section, we will introduce our model in de-
tails. Our model aims to extract the answer to a
given question in the large-scale unlabeled corpus.
We first retrieve paragraphs corresponding to the
question from the open-domain corpus using in-
formation retrieval technique, and then extract the
answer from these retrieved paragraphs.

Formally, given a question q =
(q1, q2, · · · , q|q|), we retrieve m paragraphs
which are defined as P = {p1, p2, · · · , pm}
where pi = (p1i , p

2
i , · · · , p

|pi|
i ) is the i-th retrieved

paragraph. Our model measures the probability
of extracting answer a given question q and
corresponding paragraph set P . As illustrated in
Fig. 1, our model contains two parts:

1. Paragraph Selector. Given the ques-
tion q and the retrieved paragraph P , the para-
graph selector measures the probability distri-
bution Pr(pi|q, P ) over all retrieved paragraphs,
which is used to select the paragraph that really
contains the answer of question q.

2. Paragraph Reader. Given the question q
and a paragraph pi, the paragraph reader calculates
the probability Pr(a|q, pi) of extracting answer a
through a multi-layer long short-term memory net-
work.

Overall, the probability Pr(a|q, P ) of extracting
answer a given question q can be calculated as:

Pr(a|q, P ) =
X

pi2P
Pr(a|q, pi) Pr(pi|q, P ). (1)

3.1 Paragraph Selector
Since the wrong labeling problem inevitably oc-
curs in DS-QA data, we need to filter out those
noisy paragraphs when exploiting the information
of all retrieved paragraphs. It is straightforward
that we need to estimate the confidence of each
paragraph. Hence, we employ a paragraph selec-
tor to measure the probability of each paragraph
containing the answer among all paragraphs.

Paragraph Encoding. We first represent each
word pji in the paragraph pi as a word vector pj

i ,
and then feed each word vector into a neural net-
work to obtain the hidden representation p̂j

i . Here,
we adopt two types of neural networks including:
1. Multi-Layer Perceptron (MLP)

p̂j
i = MLP(pj

i ), (2)

2. Recurrent Neural Network (RNN)

{p̂1
i , p̂

2
i , · · · , p̂

|pi|
i } = RNN({p1

i ,p
2
i , · · · ,p

|pi|
i }),

(3)
where p̂j

i is expected to encode semantic informa-
tion of word pji and its surrounding words. For
RNN, we select a single-layer bidirectional long
short-term memory network (LSTM) as our RNN
unit, and concatenate the hidden states of all layers
to obtain p̂j

i .
Question Encoding. Similar to paragraph en-

coding, we also represent each word qi in the ques-
tion as its word vector qi, and then fed them into
a MLP:

q̂j
i = MLP(qj

i ), (4)

or a RNN:

{q̂1, q̂2, · · · , q̂|q|} = RNN({q1,q2, · · · ,q|q|}).
(5)

where q̂j is the hidden representation of the word
qj and is expected to encode the context informa-
tion of it. After that, we apply a self attention op-
eration on the hidden representations to obtain the

1. Compute representations for 

query and passage independently

2. Compute relevance of passage to 

the query

3. Relevance is used as weights later

Passage Selection

1. Detect spans for each passage

2. Multiple answers possible in a 

passage

3. Use the same rep. space for 

passage sel.  and answer sel.

Answer Selection
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Idea: The more confident we are, the less we should retrieve
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Figure 2: Recall (a) and average number of rel-
evant documents (b) for growing top-n configu-
rations and a static corpus size (full Wikipedia
dump). While the recall is converging the number
of relevant documents keeps growing resulting in
a higher density of relevant information.

swer might appear multiple times, how often it is
included in the top-n. Evidently, the recall in (b)
drops quickly for a top-1 system when augment-
ing the corpus. Yet it remains fairly stable for a
top-n system, due to the fact that it is sufficient to
have the correct answer in any of the n documents.
According to (c), the correct answer is often more
than once returned by a top-n system, increasing
the chance of answer extraction.

The above findings result in a noise-information
trade-off. A top-1 system often identifies the cor-
rect answer for a small corpus, whereas a larger
corpus introduces additional noise and thus im-
pedes the overall performance. Conversely, a
top-n system accomplishes a higher density of rel-
evant information for a large corpus as the answer
is often contained multiple times. This effect is
visualized in an additional experiment shown in
Fig. 2. We keep the corpus size fixed and vary only
n, i.e. the number of retrieved documents. We see
the recall converging fast, while the average num-
ber of relevant documents keeps growing, leading
to a higher density of relevant information. As a
result, a top-n system might not be compromised
by a declining recall, since it contains the correct
answer over-proportionally often. This logic mo-
tivates us in the following to introduce an adap-
tive ni that optimizes the number of documents re-
trievals in a top-n system independently for every
query qi.

4 Adaptive Document Retrieval

This section advances deep question answering
by developing adaptive methods for document re-
trieval. Our methods differ from conventional doc-
ument retrieval in which the number of returned
documents is set to a fixed n. Conversely, we ac-
tively optimize the choice of ni for each document
retrieval i. Formally, we select ni between 1 and
a maximum ⌧ (e. g. ⌧ = 20), given documents
[d(1)i , . . . , d(⌧)i ]. These entail further scores denot-
ing the relevance, i. e. si = [s(1)i , . . . , s(⌧)i ]T with
normalization s. t.

P
j s

(j)
i = 1. The scoring func-

tion is treated as a black-box and thus can be based
on simple tf-idf similarity but also complex prob-
abilistic models.

4.1 Threshold-Based Retrieval

As a naı̈ve baseline, we propose a simple
threshold-based heuristic. That is, ni is deter-
mined such that the cumulative confidence score
reaches a fixed threshold ✓ 2 (0, 1]. Formally, the
number ni of retrieved documents is given by

ni = max
k

kX

j=1

s(j)i < ✓. (1)

In other words, the heuristic fills up documents un-
til surpassing a certain confidence threshold. For
instance, if the document retrieval is certain that
the correct answer must be located within a spe-
cific document, it automatically selects fewer doc-
uments.

4.2 Ordinal Regression

We further implement a trainable classifier in the
form of an ordinal ridge regression which is tai-
lored to ranking tasks. We further expect the cu-
mulative confidence likely to be linear. The classi-
fier then approximates ni with a prediction yi that
denotes the position of the first relevant document
containing the desired answer. As such, we learn
a function

yi = f([s(1)i , . . . , s(⌧)i ]) = dsTi �e, (2)

where d. . .e denotes the ceiling function.
The ridge coefficients are learned through a cus-

tom loss function

L = kdX�e � yk1 + � k�k2 , (3)

Choose passages until surpassing a certain confidence threshold
• if document retrieval is certain à selects fewer docs/passages
• If uncertain à retrieval depth is higher
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Figure 1: Comparison of how top-n document retrieval affects deep QA. Plot (a) shows the percentage of
exact matches with the correct answering, thereby measuring the end-to-end performance of the complete
system. Plot (b) gives the recall at top-n, i. e. the fraction of samples where at least once the correct
answer is returned. Plot (c) depicts the average number of documents that contain the ground-truth
answer. As a result, the recall lowers with increasing corpus size, yet this not necessarily compromises a
top-n system, as it often contains the correct answer more than once.

answer is extracted from the top n = 5 documents.
This choice stems from computing the dot product
between documents and a query vector; with tf-idf
weighting of hashed bi-gram counts. Wang et al.
(2018) extended this approach by implementing a
neural re-ranking of the candidate document, yet
keeping the fixed number of n selected documents
unchanged. In particular, the interplay between
both modules for document retrieval and machine
comprehension has not yet been studied. This es-
pecially pertains to the number of candidate docu-
ments, n, that should be selected during document
retrieval.

Component interactions. Extensive research
has analyzed the interplay of both document re-
trieval and machine comprehension in the con-
text of knowledge-based systems (c. f. Moldovan
et al., 2003) and even retrieval-based systems with
machine learning (c. f. Brill et al., 2002). How-
ever, these findings do not translate to machine
comprehension with deep learning. Deep neu-
ral networks consist of a complex attention mech-
anism for selecting the context-specific answer
(Hermann et al., 2015) that has not been avail-
able to traditional machine learning and, more-
over, deep learning is highly sensitive to settings
involving multiple input paragraphs, often strug-
gling with selecting the correct answer (Clark and
Gardner, 2017).

3 Noise-Information Trade-Off in

Document Retrieval

In the following, we provide empirical evidence
why a one-fits-all n can be suboptimal. For this

purpose, we run a series of experiments in order
to obtain a better understanding of the interplay
between document retrieval and machine compre-
hension modules. That is, we specifically com-
pare the recall of document retrieval to the end-to-
end performance of the complete QA system; see
Fig. 1. Our experiments study the sensitivity along
two dimensions: on the one hand, we change the
number of top-n documents that are returned dur-
ing document retrieval and, on the other hand, we
vary the corpus size.

Our experiments utilize the TREC QA dataset
as a well-established benchmark for open-domain
question answering. It contains 694 question-
answer pairs that are answered with the help of
Wikipedia. We vary the corpus between a small
case (where each question-answer pair contains
only one Wikipedia article with the correct an-
swer plus 50 % articles as noise) and the complete
Wikipedia dump containing more than five million
documents. Our experiments further draw upon
the DrQA system (Chen et al., 2017) for question
answering that currently stands as a baseline in
deep question answering. We further modified it to
return different numbers of candidate documents.

Fig. 1 (a) shows the end-to-end performance
across different top-n document retrievals as mea-
sured by the exact matches with ground truth. For
a small corpus, we clearly register a superior per-
formance for the top-1 system. However, we ob-
serve a different pattern with increasing corpus
size. Fig. 1 (b) and (c) shed light into the un-
derlying reason by reporting how frequently the
correct answer is returned and, as the correct an-
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Figure 1: Comparison of how top-n document retrieval affects deep QA. Plot (a) shows the percentage of
exact matches with the correct answering, thereby measuring the end-to-end performance of the complete
system. Plot (b) gives the recall at top-n, i. e. the fraction of samples where at least once the correct
answer is returned. Plot (c) depicts the average number of documents that contain the ground-truth
answer. As a result, the recall lowers with increasing corpus size, yet this not necessarily compromises a
top-n system, as it often contains the correct answer more than once.

answer is extracted from the top n = 5 documents.
This choice stems from computing the dot product
between documents and a query vector; with tf-idf
weighting of hashed bi-gram counts. Wang et al.
(2018) extended this approach by implementing a
neural re-ranking of the candidate document, yet
keeping the fixed number of n selected documents
unchanged. In particular, the interplay between
both modules for document retrieval and machine
comprehension has not yet been studied. This es-
pecially pertains to the number of candidate docu-
ments, n, that should be selected during document
retrieval.

Component interactions. Extensive research
has analyzed the interplay of both document re-
trieval and machine comprehension in the con-
text of knowledge-based systems (c. f. Moldovan
et al., 2003) and even retrieval-based systems with
machine learning (c. f. Brill et al., 2002). How-
ever, these findings do not translate to machine
comprehension with deep learning. Deep neu-
ral networks consist of a complex attention mech-
anism for selecting the context-specific answer
(Hermann et al., 2015) that has not been avail-
able to traditional machine learning and, more-
over, deep learning is highly sensitive to settings
involving multiple input paragraphs, often strug-
gling with selecting the correct answer (Clark and
Gardner, 2017).

3 Noise-Information Trade-Off in

Document Retrieval

In the following, we provide empirical evidence
why a one-fits-all n can be suboptimal. For this

purpose, we run a series of experiments in order
to obtain a better understanding of the interplay
between document retrieval and machine compre-
hension modules. That is, we specifically com-
pare the recall of document retrieval to the end-to-
end performance of the complete QA system; see
Fig. 1. Our experiments study the sensitivity along
two dimensions: on the one hand, we change the
number of top-n documents that are returned dur-
ing document retrieval and, on the other hand, we
vary the corpus size.

Our experiments utilize the TREC QA dataset
as a well-established benchmark for open-domain
question answering. It contains 694 question-
answer pairs that are answered with the help of
Wikipedia. We vary the corpus between a small
case (where each question-answer pair contains
only one Wikipedia article with the correct an-
swer plus 50 % articles as noise) and the complete
Wikipedia dump containing more than five million
documents. Our experiments further draw upon
the DrQA system (Chen et al., 2017) for question
answering that currently stands as a baseline in
deep question answering. We further modified it to
return different numbers of candidate documents.

Fig. 1 (a) shows the end-to-end performance
across different top-n document retrievals as mea-
sured by the exact matches with ground truth. For
a small corpus, we clearly register a superior per-
formance for the top-1 system. However, we ob-
serve a different pattern with increasing corpus
size. Fig. 1 (b) and (c) shed light into the un-
derlying reason by reporting how frequently the
correct answer is returned and, as the correct an-

Large corpus = more noise 

Retrieved doc/passage score

si =
h
s(1)i , . . . , s(⌧)i
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Slightly more involved depth prediction
• Predict the rank of the first relevant document
• With a small tolerance 

[Kratzwald & Feuerriegel ’ 18]
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Figure 3: End-to-end perfor-
mance of adaptive informa-
tion retrieval over static top-
n configurations and a grow-
ing corpus.

SQuAD TREC WebQuestions WikiMovies

DrQA (Chen et al., 2017)† 29.3 27.5 18.5 36.6

Threshold-based (✓ = 0.75) 29.8 28.7 19.2 38.6

Ordinal regression (b = 1) 29.7 28.1 19.4 38.0
Ordinal regression (b = 3) 29.6 29.3 19.6 38.4

R3 (Wang et al., 2018) 29.1 28.4 17.1 38.8

† : Numbers vary slightly from those reported in the original paper, as the public repository was optimized for runtime performance.

Table 1: End-to-end performance of the plain DrQA system measured in
exact matches. Performance of two threshold based and two regression
based adaptive retreival improvements as well as other state-of-the art
systems. Experiments are based on the full Wikipedia dump containing
more than 5 million documents.

SQuAD TREC WebQuestions WikiMovies

Top-50 System 27.0 23.5 15.1 24.4
Top-80 System 27.2 25.9 14.9 26.0

Threshold-based (✓ = 0.75, ⌧ = 100) 27.2 27.1 15.4 26.3
Ordinal regression (b = 3, ⌧ = 250) 27.3 27.1 16.7 26.5

Table 2: End-to-end performance measured in percentages of exact matching answers of a second QA
system that operates on paragraph-level information retrieval. We compare two configurations of the
system using the top-50 and top-80 ranked paragraphs to extract the answer against our threshold-based
approach and regression approach that selects the cutoff within the first 250 paragraphs.

uses cosine similarity to score tf-idf-weighted bag-
of-word (unigram) vectors. The reader is a modi-
fied version of the DrQA document reader with an
additional bi-directional attention layer (Seo et al.,
2017). We are testing two different configura-
tions1 of this system: one that selects the top-50
paragraphs and one that selects the top-80 para-
graphs against our approach as shown in Tab. 2.
We see that, owed to the paragraph-level infor-
mation retrieval, the number of top-n passages
gains even more importance. Both variations of
the system outperform a system without adaptive
retrieval, which confirms our findings.

6 Conclusion

Our contribution is three-fold. First, we establish
that deep question answering is subject to a noise-
information trade-off. As a consequence, the num-
ber of selected documents in deep QA should not
be treated as fixed, rather it must be carefully tai-
lored to the QA task. Second, we propose adap-
tive schemes that determine the optimal document

1Best configurations out of {30, 40, 50, 60, 70, 80,
90, and 100} on SQuAD train split.

count. This can considerably bolster the perfor-
mance of deep QA systems across multiple bench-
marks. Third, we further demonstrate how cru-
cial an adaptive document retrieval is in the con-
text of different corpus sizes. Here our adaptive
strategy presents a flexible strategy that can suc-
cessfully adapt to it and, compared to a fixed doc-
ument count, accomplishes the best performance
in terms of regret.

Reproducibility

Code to integrate adaptive document retrieval
in custom QA system and future research is
freely available at https://github.com/
bernhard2202/adaptive-ir-for-qa
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§ Single retrieve and read step is limiting – vocabulary gap between question and corpus 
passages

§ How can we enable multi-stage retriever-reader interaction ?
§ Akin to Neural Query Expansion
§ Take care about efficiency concerns 

[Das et al. ICLR ‘19]
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[Das et al. ICLR ‘19]
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§ Document gated reader [Wang et al. ’ 19]

§ Document gating during span prediction

§ Tracernet [Dehgani et al ’19]

§ Larger contextual models to incorporate reasoning between multiple 
passages

§ R3 [Wang et al ‘19]

§ Train reader over retrieved docs using the final answer as signal (using 
REINFORCE)

§ Shared Normalization [Clark & Gardner ’18, Wang ’19]

§ process passages independently, but compute the span probability across 
spans in all passages in every mini-batch 
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No. Model EM F1

1 Single-sentence 34.8 44.4
2 Length-50 35.5 45.2
3 Length-100 35.7 45.7
4 Length-200 34.8 44.7

5 w/o sliding-window (same as (3)) 35.7 45.7
6 w/ sliding-window 40.4 49.8

7 w/o passage ranker (same as (6)) 40.4 49.8
8 w/ passage ranker 41.3 51.7
9 w/ passage scores 42.8 53.4

10 BERT+QANet 18.3 27.8
11 BERT+QANet (fix BERT) 35.5 45.9
12 BERT+QANet (init. from (11)) 36.2 46.4

Table 1: Results on the validation set of OpenSQuAD.

Figure 1: Effect of global normalization.

3.1 Model Analysis

To answer questions from section 1, we conduct a
series of experiments on OpenSQuAD dataset, and
report the validation set results in Table 1. Multi-
passage BERT model is used for experiments.

Effect of passage granularity: Previous work
usually defines passages as articles (Chen et al.,
2017), paragraphs (Yang et al., 2019), or sentences
(Wang et al., 2018a; Lin et al., 2018). We ex-
plore the effect of passage granularity regarding
to the passage length, i.e., the number of words
in each passage. Each article is split into non-
overlapping passages based on a fixed length. We
vary passage length among {50, 100, 200}, and
list the results as models (2) (3) (4) in Table 1,
respectively. Comparing to single-sentence pas-
sages (model (1)), leveraging fixed-length pas-
sages works better, and passages with 100 words
works the best. Hereafter, we set passage length
as 100 words.

Effect of sliding window: Splitting articles into
non-overlapping passages may force some near-
boundary answer spans to lose useful contexts. To
deal with this issue, we split articles into overlap-
ping passages by sliding window. We set the win-
dow size as 100 words, and the stride as 50 words
(half the window size). Result from the sliding
window model is shown as model (6) in Table 1.
We can see that this method brings us 4.7% EM

and 4.1% F1 improvements. Hereafter, we use
sliding window method.

Effect of passage ranker: We plug the passage
ranker into the QA pipeline. First, the retriever
returns top-100 passages for each question. Then,
the passage ranker is employed to rerank these 100
passages. Finally, multi-passage BERT takes top-
30 reranked passages as input to pinpoint the final
answer. We design two models to check the ef-
fect of the passage ranker. The first model utilizes
the reranked passages but without using passage
scores, whereas the second model makes use of
both the reranked passages and their scores. Re-
sults are given in Table 1 as models (8) and (9) re-
spectively. We can find that only using reranked
passages gives us 0.9% EM and 1.0% F1 im-
provements, and leveraging passage scores gives
us 1.5% EM and 1.7% F1 improvements. There-
fore, passage ranker is useful for multi-passage
BERT model.

Effect of global normalization: We train
BERT-RC and multi-passage BERT models using
the reranked passages, then evaluate them by tak-
ing as input various number of passages. These
models are evaluated on two setups: with and
without using passage scores. F1 scores for BERT-
RC based on different number of passages are
shown as the dotted and solid green curves in
Figure 1. F1 scores for our multi-passage BERT
model with similar settings are shown as the dot-
ted and solid blue curves. We can see that all mod-
els start from the same F1, because multi-passage
BERT is equivalent to BERT-RC when using only
one passage. While increasing the number of pas-
sages, BERT-RC without using passage scores de-
creases the performance significantly, which ver-
ifies that the answer scores from BERT-RC are
incomparable across passages. This issue is al-
leviated to some extent by leveraging passage
scores. On the other hand, performance from
multi-passage BERT without using passage scores
increases at the beginning, and then flattens out
after passage number is over 10. By utilizing pas-
sage scores, multi-passage BERT gets better per-
formance while using more passages. This phe-
nomenon shows the effectiveness of global nor-
malization, which enables the model find better
answers by utilizing more passages.

Does explicit inter-sentence matching mat-

ter? Almost all previous state-of-the-art QA
and RC models find answers by matching pas-



Instead of an inverted index, use a vector index

§ ORQA [Lee et al ’19]

§ Both retriever and reader are learnable (BERT)

§ REALM [Wang et al ‘19]

§ Train reader over retrieved docs using the final answer as signal (using REINFORCE)

§ DenSPI [Seo ’19]

§ Turns the QA problem into a retrieval problem why sparse encoding of docs and dense indexing 
of phrases
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